Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 81 trang 99 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học Toán 10 một cách tốt nhất.
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.
Đề bài
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.
a) Lập phương trình các đường thẳng AB, BC, AC
b) Tìm toạ độ các điểm G, H, I
c) Tính diện tích tam giác ABC
Phương pháp giải - Xem chi tiết
a) Tìm các VTPT của các đường thẳng AB, BC, AC rồi viết PTTQ
b) Tham số hóa tọa độ các điểm G, H, I (nếu cần)
Bước 1: Tìm tọa độ trọng tâm G theo công thức \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)
Bước 2: Giải hệ PT: \(\left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right.\) để tìm tọa độ trực tâm H
Bước 3: Giải hệ PT: \(\left\{ \begin{array}{l}IA = IB\\IA = IC\end{array} \right.\) để tìm tọa độ tâm I
Bước 4: Tính khoảng cách từ A đến BC là chiều cao của ∆ABC
Bước 5: Tính độ dài BC rồi tính diện tích ∆ABC
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AB} = (6;6),\overrightarrow {BC} = (0; - 9),\overrightarrow {AC} = (6; - 3)\)
+ Chọn \(\overrightarrow {{n_1}} = (1; - 1)\) thỏa mãn \(\overrightarrow {{n_1}} .\overrightarrow {AB} = 0\). Khi đó AB đi qua A(-3 ; -1) và nhận \(\overrightarrow {{n_1}} = (1; - 1)\) nên có PT:
x - y + 2 = 0
+ Chọn \(\overrightarrow {{n_2}} = (1;0)\) thỏa mãn \(\overrightarrow {{n_2}} .\overrightarrow {BC} = 0\). Khi đó BC đi qua B(3 ; 5) và nhận \(\overrightarrow {{n_2}} = (1;0)\) nên có PT: x – 3 = 0
+ Chọn \(\overrightarrow {{n_3}} = (1;2)\) thỏa mãn \(\overrightarrow {{n_3}} .\overrightarrow {AC} = 0\). Khi đó AC đi qua C(3 ; -4) và nhận \(\overrightarrow {{n_3}} = (1;2)\) nên có PT:
x + 2y + 5 = 0
b) Ta có:
+ G là trọng tâm ∆ABC nên \( \Rightarrow G(1;0)\)
+ Gọi \(H({x_H};{y_H})\) là trực tâm ∆ABC . Ta có: \(\overrightarrow {AH} = ({x_H} + 3;{y_H} + 1),\overrightarrow {BH} = ({x_H} - 3;{y_H} - 5)\)
Khi đó\(\left\{ \begin{array}{l}AH \bot BC\\BH \bot AC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 9({y_H} + 1) = 0\\6({x_H} - 3) - 3({y_H} - 5)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_H} + 1 = 0\\2{x_H} - {y_H} - 1 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_H} = 0\\{y_H} = - 1\end{array} \right.\)
\( \Rightarrow H(0; - 1)\)
+ Gọi \(I({x_I};{y_I})\) là tâm đường tròn ngoại tiếp tam giác ABC
Ta có: \(\overrightarrow {IA} = {( - 3 - {x_I}; - 1 - {y_I})^2} \Rightarrow IA = \sqrt {{{({x_I} + 3)}^2} + {{({y_I} + 1)}^2}} \Rightarrow I{A^2} = {({x_I} + 3)^2} + {({y_I} + 1)^2}\)
\(\overrightarrow {IB} = {(3 - {x_I};5 - {y_I})^2} \Rightarrow IB = \sqrt {{{({x_I} - 3)}^2} + {{({y_I} - 5)}^2}} \Rightarrow I{B^2} = {({x_I} - 3)^2} + {({y_I} - 5)^2}\)
\(\overrightarrow {IC} = {(3 - {x_I}; - 4 - {y_I})^2} \Rightarrow IC = \sqrt {{{({x_I} - 3)}^2} + {{({y_I} + 4)}^2}} \Rightarrow I{C^2} = {({x_I} - 3)^2} + {({y_I} + 4)^2}\)
Khi đó \(\left\{ \begin{array}{l}IA = IB\\IA = IC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = I{B^2}\\I{A^2} = I{C^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{({x_I} + 3)^2} + {({y_I} + 1)^2} = {({x_I} - 3)^2} + {({y_I} - 5)^2}\\{({x_I} + 3)^2} + {({y_I} + 1)^2} = {({x_I} - 3)^2} + {({y_I} + 4)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}12{x_I} + 12{y_I} = 24\\12{x_I} - 6{y_I} = 15\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} + {y_I} = 2\\4{x_I} - 2{y_I} = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_I} = \frac{3}{2}\\{y_I} = \frac{1}{2}\end{array} \right.\)\( \Rightarrow I\left( {\frac{3}{2};\frac{1}{2}} \right)\)
Vậy \(G(1;0),H(0; - 1),I\left( {\frac{3}{2};\frac{1}{2}} \right)\)
c) Ta có: \(d(A,BC) = \frac{{\left| { - 3 - 3} \right|}}{1} = 6\)
\(\overrightarrow {BC} = (0; - 9) \Rightarrow BC = 9\)
Diện tích tam giác ABC là: \(S = \frac{1}{2}AD.BC = \frac{1}{2}.6.9 = 27\)
Bài 81 trang 99 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong hình học. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:
Trước khi đi vào giải chi tiết, chúng ta cần đọc kỹ đề bài và xác định yêu cầu của bài toán. Thông thường, bài 81 trang 99 SBT Toán 10 - Cánh Diều sẽ yêu cầu chúng ta:
Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài toán. Tuy nhiên, dưới đây là một ví dụ minh họa cách giải một dạng bài tập thường gặp:
Cho tam giác ABC có A(1;2), B(3;4), C(-1;0). Tính độ dài cạnh BC.
Lời giải:
Vậy độ dài cạnh BC là 4√2.
Ngoài bài 81 trang 99 SBT Toán 10 - Cánh Diều, bạn có thể gặp các bài tập tương tự với các yêu cầu khác nhau. Dưới đây là một số dạng bài tập thường gặp:
Để giải các bài tập về vectơ một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để học Toán 10 một cách hiệu quả, bạn có thể tham khảo các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 81 trang 99 SBT Toán 10 - Cánh Diều và các bài tập tương tự. Chúc bạn học Toán 10 thành công!