Logo Header
  1. Môn Toán
  2. Giải bài 81 trang 99 SBT toán 10 - Cánh diều

Giải bài 81 trang 99 SBT toán 10 - Cánh diều

Giải bài 81 trang 99 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 81 trang 99 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học Toán 10 một cách tốt nhất.

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.

Đề bài

Trong mặt phẳng toạ độ Oxy, cho tam giác ABCA(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.

a) Lập phương trình các đường thẳng AB, BC, AC

b) Tìm toạ độ các điểm G, H, I

c) Tính diện tích tam giác ABC

Phương pháp giải - Xem chi tiếtGiải bài 81 trang 99 SBT toán 10 - Cánh diều 1

a) Tìm các VTPT của các đường thẳng AB, BC, AC rồi viết PTTQ

b) Tham số hóa tọa độ các điểm G, H, I (nếu cần)

Bước 1: Tìm tọa độ trọng tâm G theo công thức \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)

Bước 2: Giải hệ PT: \(\left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right.\) để tìm tọa độ trực tâm H

Bước 3: Giải hệ PT: \(\left\{ \begin{array}{l}IA = IB\\IA = IC\end{array} \right.\) để tìm tọa độ tâm I

Bước 4: Tính khoảng cách từ A đến BC là chiều cao của ∆ABC

Bước 5: Tính độ dài BC rồi tính diện tích ∆ABC

Lời giải chi tiết

a) Ta có: \(\overrightarrow {AB} = (6;6),\overrightarrow {BC} = (0; - 9),\overrightarrow {AC} = (6; - 3)\)

+ Chọn \(\overrightarrow {{n_1}} = (1; - 1)\) thỏa mãn \(\overrightarrow {{n_1}} .\overrightarrow {AB} = 0\). Khi đó AB đi qua A(-3 ; -1) và nhận \(\overrightarrow {{n_1}} = (1; - 1)\) nên có PT:

x - y + 2 = 0

+ Chọn \(\overrightarrow {{n_2}} = (1;0)\) thỏa mãn \(\overrightarrow {{n_2}} .\overrightarrow {BC} = 0\). Khi đó BC đi qua B(3 ; 5) và nhận \(\overrightarrow {{n_2}} = (1;0)\) nên có PT: x – 3 = 0

+ Chọn \(\overrightarrow {{n_3}} = (1;2)\) thỏa mãn \(\overrightarrow {{n_3}} .\overrightarrow {AC} = 0\). Khi đó AC đi qua C(3 ; -4) và nhận \(\overrightarrow {{n_3}} = (1;2)\) nên có PT:

x + 2y + 5 = 0

b) Ta có:

+ G là trọng tâm ∆ABC nên \( \Rightarrow G(1;0)\)

+ Gọi \(H({x_H};{y_H})\) là trực tâm ∆ABC . Ta có: \(\overrightarrow {AH} = ({x_H} + 3;{y_H} + 1),\overrightarrow {BH} = ({x_H} - 3;{y_H} - 5)\)

Khi đó\(\left\{ \begin{array}{l}AH \bot BC\\BH \bot AC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 9({y_H} + 1) = 0\\6({x_H} - 3) - 3({y_H} - 5)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_H} + 1 = 0\\2{x_H} - {y_H} - 1 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_H} = 0\\{y_H} = - 1\end{array} \right.\)

\( \Rightarrow H(0; - 1)\)

+ Gọi \(I({x_I};{y_I})\) là tâm đường tròn ngoại tiếp tam giác ABC

Ta có: \(\overrightarrow {IA} = {( - 3 - {x_I}; - 1 - {y_I})^2} \Rightarrow IA = \sqrt {{{({x_I} + 3)}^2} + {{({y_I} + 1)}^2}} \Rightarrow I{A^2} = {({x_I} + 3)^2} + {({y_I} + 1)^2}\)

\(\overrightarrow {IB} = {(3 - {x_I};5 - {y_I})^2} \Rightarrow IB = \sqrt {{{({x_I} - 3)}^2} + {{({y_I} - 5)}^2}} \Rightarrow I{B^2} = {({x_I} - 3)^2} + {({y_I} - 5)^2}\)

\(\overrightarrow {IC} = {(3 - {x_I}; - 4 - {y_I})^2} \Rightarrow IC = \sqrt {{{({x_I} - 3)}^2} + {{({y_I} + 4)}^2}} \Rightarrow I{C^2} = {({x_I} - 3)^2} + {({y_I} + 4)^2}\)

Khi đó \(\left\{ \begin{array}{l}IA = IB\\IA = IC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = I{B^2}\\I{A^2} = I{C^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{({x_I} + 3)^2} + {({y_I} + 1)^2} = {({x_I} - 3)^2} + {({y_I} - 5)^2}\\{({x_I} + 3)^2} + {({y_I} + 1)^2} = {({x_I} - 3)^2} + {({y_I} + 4)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}12{x_I} + 12{y_I} = 24\\12{x_I} - 6{y_I} = 15\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} + {y_I} = 2\\4{x_I} - 2{y_I} = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_I} = \frac{3}{2}\\{y_I} = \frac{1}{2}\end{array} \right.\)\( \Rightarrow I\left( {\frac{3}{2};\frac{1}{2}} \right)\)

Vậy \(G(1;0),H(0; - 1),I\left( {\frac{3}{2};\frac{1}{2}} \right)\)

c) Ta có: \(d(A,BC) = \frac{{\left| { - 3 - 3} \right|}}{1} = 6\)

\(\overrightarrow {BC} = (0; - 9) \Rightarrow BC = 9\)

Diện tích tam giác ABC là: \(S = \frac{1}{2}AD.BC = \frac{1}{2}.6.9 = 27\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 81 trang 99 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 81 trang 99 SBT Toán 10 - Cánh Diều: Hướng dẫn chi tiết

Bài 81 trang 99 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong hình học. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:

  • Vectơ: Định nghĩa, các phép toán trên vectơ (cộng, trừ, nhân với một số).
  • Tích vô hướng của hai vectơ: Công thức tính, ứng dụng để tính góc giữa hai vectơ, kiểm tra vuông góc.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ, các phép toán trên vectơ trong hệ tọa độ.

Phân tích bài toán

Trước khi đi vào giải chi tiết, chúng ta cần đọc kỹ đề bài và xác định yêu cầu của bài toán. Thông thường, bài 81 trang 99 SBT Toán 10 - Cánh Diều sẽ yêu cầu chúng ta:

  1. Tìm tọa độ của một vectơ.
  2. Tính tích vô hướng của hai vectơ.
  3. Chứng minh một đẳng thức vectơ.
  4. Xác định mối quan hệ giữa các vectơ (song song, vuông góc).

Lời giải chi tiết bài 81 trang 99 SBT Toán 10 - Cánh Diều

Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài toán. Tuy nhiên, dưới đây là một ví dụ minh họa cách giải một dạng bài tập thường gặp:

Ví dụ:

Cho tam giác ABC có A(1;2), B(3;4), C(-1;0). Tính độ dài cạnh BC.

Lời giải:

  1. Tìm vectơ BC: BC = C - B = (-1 - 3; 0 - 4) = (-4; -4)
  2. Tính độ dài cạnh BC: |BC| = √((-4)² + (-4)²) = √(16 + 16) = √32 = 4√2

Vậy độ dài cạnh BC là 4√2.

Các dạng bài tập tương tự

Ngoài bài 81 trang 99 SBT Toán 10 - Cánh Diều, bạn có thể gặp các bài tập tương tự với các yêu cầu khác nhau. Dưới đây là một số dạng bài tập thường gặp:

  • Tính góc giữa hai vectơ.
  • Chứng minh hai vectơ vuông góc.
  • Tìm tọa độ của một điểm thỏa mãn một điều kiện cho trước.
  • Ứng dụng vectơ vào giải các bài toán hình học phẳng.

Mẹo giải bài tập vectơ

Để giải các bài tập về vectơ một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng công thức: Nắm vững các công thức về vectơ và tích vô hướng để áp dụng vào giải bài tập.
  • Biến đổi đại số: Sử dụng các phép biến đổi đại số để đơn giản hóa biểu thức và tìm ra kết quả.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học Toán 10 một cách hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 - Cánh Diều
  • Sách bài tập Toán 10 - Cánh Diều
  • Các trang web học Toán online uy tín (ví dụ: giaitoan.edu.vn)
  • Các video bài giảng Toán 10 trên YouTube

Kết luận

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 81 trang 99 SBT Toán 10 - Cánh Diều và các bài tập tương tự. Chúc bạn học Toán 10 thành công!

Tài liệu, đề thi và đáp án Toán 10