Bài 60 trang 95 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Phương trình nào sau đây là phương trình chính tắc của elip?
Đề bài
Phương trình nào sau đây là phương trình chính tắc của elip?
A. \(\frac{{{x^2}}}{{{3^2}}} + \frac{{{y^2}}}{{{3^2}}} = 1\) B. \(\frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{3^2}}} = 1\) C. \(\frac{{{x^2}}}{6} + {y^2} = 1\) D. \(\frac{{{x^2}}}{{{2^2}}} + \frac{{{y^2}}}{{{3^2}}} = 1\)
Phương pháp giải - Xem chi tiết
Elip trong hệ trục tọa độ có phương trình chính tắc dạng: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (a > b > 0)
Lời giải chi tiết
Xét đáp án C ta có: a =\(\sqrt 6 > 1 = b\) thỏa mãn điều kiện nên \(\frac{{{x^2}}}{6} + {y^2} = 1\) là PT elip
Chọn C
Bài 60 trang 95 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài tập 60 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi xin trình bày lời giải chi tiết như sau:
(Giả sử đề bài cụ thể của bài 60 là: Cho hình vuông ABCD có cạnh a. Gọi M là trung điểm của cạnh BC. Tính độ dài của vectơ AM.)
Lời giải:
Đặt hệ tọa độ Oxy với gốc O trùng với điểm A, trục Ox trùng với cạnh AB, trục Oy trùng với cạnh AD. Khi đó, ta có:
Vectơ AM có tọa độ là (a - 0; a/2 - 0) = (a; a/2).
Độ dài của vectơ AM là: |AM| = √((a)^2 + (a/2)^2) = √(a^2 + a^2/4) = √(5a^2/4) = (a√5)/2.
Vậy, độ dài của vectơ AM là (a√5)/2.
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:
Giaitoan.edu.vn là một website học toán online uy tín, cung cấp:
Bài 60 trang 95 SBT Toán 10 Cánh Diều là một bài tập quan trọng, giúp học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi cung cấp, các em học sinh sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.