Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 44 trang 82 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học Toán 10 một cách tốt nhất. Hãy cùng bắt đầu nhé!
Cho hai đường thẳng ∆1: mx – 2y – 1 = 0 và ∆2: x - 2y + 3 = 0. Với giá trị nào của tham số m thì:
Đề bài
Cho hai đường thẳng ∆1: mx – 2y – 1 = 0 và ∆2: x - 2y + 3 = 0. Với giá trị nào của tham số m thì:
a) ∆1 // ∆2?
b) ∆1\( \bot {\Delta _2}\)?
Phương pháp giải - Xem chi tiết
Cho 2 đường thẳng ∆1: ax + by + c = 0 và ∆2: a’x + b’y + c’ = 0. Ta có ∆1 // ∆2 \( \Leftrightarrow \frac{a}{{a'}} = \frac{b}{{b'}} \ne \frac{c}{{c'}}\)
Bước 1: Áp dụng kết quả trên để tìm m thỏa mãn ∆1 // ∆2
Bước 2: Tìm m để 2 VTPT của ∆1 và ∆2 nhân vô hướng với nhau bằng 0 thỏa mãn ∆1\( \bot {\Delta _2}\)
Lời giải chi tiết
∆1 có VTPT là \(\overrightarrow {{n_1}} = (m; - 2)\); ∆2 có VTPT là \(\overrightarrow {{n_2}} = (1; - 2)\)
a) ∆1 // ∆2 khi và chỉ khi \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) cùng phương và ∆1 và ∆2 không trùng nhau
\( \Leftrightarrow \frac{m}{1} = \frac{{ - 2}}{{ - 2}} \ne \frac{{ - 1}}{3} \Leftrightarrow m = 1\)
Vậy với m = 1 thì ∆1 // ∆2
b) \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0 \Leftrightarrow m + 4 = 0 \Leftrightarrow m = - 4\)
Vậy với m = -4 thì \({\Delta _1} \bot {\Delta _2}\)
Bài 44 trang 82 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 44 thường bao gồm các dạng bài tập sau:
Để giải bài 44 trang 82 SBT Toán 10 - Cánh Diều một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 44 (ví dụ, giả sử bài 44 có 3 câu a, b, c):
Đề bài: Cho hai vectơ a và b. Tìm vectơ a + b.
Lời giải: Để tìm vectơ a + b, ta thực hiện phép cộng vectơ theo quy tắc hình bình hành hoặc quy tắc tam giác. Nếu biết tọa độ của a và b, ta cộng tương ứng các tọa độ của chúng.
Đề bài: Cho vectơ a và số thực k. Tìm vectơ ka.
Lời giải: Để tìm vectơ ka, ta nhân mỗi tọa độ của vectơ a với số thực k. Nếu k > 0, vectơ ka cùng hướng với a. Nếu k < 0, vectơ ka ngược hướng với a.
Đề bài: Chứng minh rằng a - b = a + (-1)b.
Lời giải: Để chứng minh đẳng thức này, ta sử dụng các tính chất của phép cộng và phép trừ vectơ. Ta có a - b = a + b', trong đó b' là vectơ đối của b. Mà b' = (-1)b. Do đó, a - b = a + (-1)b.
Để củng cố kiến thức về vectơ, bạn có thể làm thêm các bài tập tương tự trong SBT Toán 10 - Cánh Diều hoặc các nguồn tài liệu khác.
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 44 trang 82 SBT Toán 10 - Cánh Diều. Chúc bạn học tập tốt!