Bài 40 trang 82 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 40 trang 82 SBT Toán 10 Cánh Diều, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Xét vị trí tương đối của mỗi cặp đường thẳng sau:
Đề bài
Xét vị trí tương đối của mỗi cặp đường thẳng sau:
a) \({d_1}:2x - 3y + 5 = 0\) và \({d_2}:2x + y - 1 = 0\)
b) \({d_3}:\left\{ \begin{array}{l}x = - 1 - 3t\\y = 3 + t\end{array} \right.\) và \({d_4}:x + 3y - 5 = 0\)
c) \({d_5}:\left\{ \begin{array}{l}x = 2 - 2t\\y = - 1 + t\end{array} \right.\) và \({d_6}:\left\{ \begin{array}{l}x = - 2 + 2t'\\y = 1 - {t^'}\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Bước 1: Đưa các phương trình về dạng PTTQ
Bước 2: Giải hệ 2 PT đường thẳng và xét số nghiệm của hệ để tìm vị trí tương đối của các đường thẳng
* Với ý b) có thể xét 2 VTPT của d3 và d4. Nếu 2 vectơ cùng phương thì lấy 1 điểm trên đường thẳng này và xét xem có thuộc đường thẳng kia hay không. Trong trường hợp không thuộc thì d3 // d4 và ngược lại thì d3 trùng d4.
* Với ý c) ta cũng có thể xét 2 VTCP của d5 và d6. Nếu 2 vectơ cùng phương thì lấy 1 điểm trên đường thẳng này và xét xem có thuộc đường thẳng kia hay không. Trong trường hợp không thuộc thì d5 // d6 và ngược lại thì d5 trùng d6.
Lời giải chi tiết
a) \({d_1}:2x - 3y + 5 = 0\) và \({d_2}:2x + y - 1 = 0\)
Tọa độ giao điểm của d1 và d2 là nghiệm của hệ PT: \(\left\{ \begin{array}{l}2x - 3y + 5 = 0\\2x + y - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - 3y = - 5\\2x + y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{4}\\y = \frac{3}{2}\end{array} \right.\)
Hệ trên có một nghiệm duy nhất. Vậy d1 và d2 cắt nhau.
b) \({d_3}:\left\{ \begin{array}{l}x = - 1 - 3t\\y = 3 + t\end{array} \right.\) và \({d_4}:x + 3y - 5 = 0\)
d3 đi qua điểm (-1; 3) và có VTCP là \(\overrightarrow u = ( - 3;1)\) \( \Rightarrow \) d3 có một VTPT là \(\overrightarrow {{n_1}} = (1;3)\)
\( \Rightarrow \) d3 và d4 có cùng VTPT nên d3 // d4 hoặc d3 và d4 trùng nhau
Thay tọa độ điểm (-1; 3) vào PT d4 ta có: -1 + 3.3 – 5 = 3 ≠ 0 \( \Rightarrow ( - 1;3) \notin {d_4}\)
Vậy d3 // d4
c) \({d_5}:\left\{ \begin{array}{l}x = 2 - 2t\\y = - 1 + t\end{array} \right.\) và \({d_6}:\left\{ \begin{array}{l}x = - 2 + 2t'\\y = 1 - t'\end{array} \right.\)
d5 đi qua A(2; -1), có VTCP là \(\overrightarrow {{u_1}} = ( - 2;1)\)
d6 đi qua B(-2; 1), có VTCP là \(\overrightarrow {{u_2}} = (2; - 1)\)
Ta thấy \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương nên d5 // d6 hoặc d5 và d6 trùng nhau
Thay tọa độ điểm A vào PT d6 ta có: \(\left\{ \begin{array}{l}2 = - 2 + 2t'\\ - 1 = 1 - t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t' = 2\\t' = 2\end{array} \right. \Leftrightarrow t' = 2 \Rightarrow A \in {d_6}\)
Vậy d5 và d6 trùng nhau
Bài 40 trang 82 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 40 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 40 trang 82 SBT Toán 10 Cánh Diều, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng từng bước. Ví dụ:)
Đề bài: Cho A(1; 2) và B(3; 4). Tính độ dài vectơ AB.
Lời giải:
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:
Ngoài bài 40 trang 82 SBT Toán 10 Cánh Diều, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách giáo khoa, sách bài tập và các trang web học toán online khác. Một số tài liệu tham khảo hữu ích:
Bài 40 trang 82 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc học tập môn Toán.