Logo Header
  1. Môn Toán
  2. Giải bài 51 trang 17 SBT toán 10 - Cánh diều

Giải bài 51 trang 17 SBT toán 10 - Cánh diều

Giải bài 51 trang 17 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 51 trang 17 trong sách bài tập Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Dùng kí hiệu để viết mỗi tập hợp sau và biểu diễn mỗi tập hợp đó trên trục số:

Đề bài

Dùng kí hiệu để viết mỗi tập hợp sau và biểu diễn mỗi tập hợp đó trên trục số:

a) \(A = \left\{ {x \in \mathbb{R}\left| { - 7 < x < - 4} \right.} \right\}\) b) \(B = \left\{ {x \in \mathbb{R}\left| { - 3 \le x \le - 1} \right.} \right\}\)

c) \(C = \left\{ {x \in \mathbb{R}\left| {x \le 0} \right.} \right\}\) d) \(D = \left\{ {x \in \mathbb{R}\left| {x > - 1} \right.} \right\}\)

Lời giải chi tiết

a) \(A = \left\{ {x \in \mathbb{R}\left| { - 7 < x < - 4} \right.} \right\} = \left( { - 7; - 4} \right)\) được biểu diễn như sau:

Giải bài 51 trang 17 SBT toán 10 - Cánh diều 1

b) Tập \(B = \left\{ {x \in \mathbb{R}\left| { - 3 \le x \le - 1} \right.} \right\} = \left[ { - 3; - 1} \right]\) được biểu diễn như sau:

Giải bài 51 trang 17 SBT toán 10 - Cánh diều 2

c) Tập \(C = \left\{ {x \in \mathbb{R}\left| {x \le 0} \right.} \right\} = ( - \infty ;0]\) được biểu diễn như sau:

Giải bài 51 trang 17 SBT toán 10 - Cánh diều 3

d) Tập \(D = \left\{ {x \in \mathbb{R}\left| {x > - 1} \right.} \right\} = ( - 1; + \infty )\) được biểu diễn như sau:

Giải bài 51 trang 17 SBT toán 10 - Cánh diều 4

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 51 trang 17 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 51 trang 17 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 51 trang 17 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.

Nội dung bài 51 trang 17 SBT Toán 10 - Cánh Diều

Bài 51 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ, tìm tọa độ của vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số thực).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ để giải các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc,...).

Lời giải chi tiết bài 51 trang 17 SBT Toán 10 - Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài 51, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày cách tiếp cận chung và ví dụ minh họa)

Ví dụ minh họa:

Câu a: Cho hai điểm A(1; 2) và B(3; 4). Tìm tọa độ của vectơ AB.

Lời giải:

Vectơ AB có tọa độ là: AB = (3 - 1; 4 - 2) = (2; 2)

Các bước giải bài tập vectơ hiệu quả:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các điểm, vectơ đã cho.
  2. Vẽ hình: Nếu có thể, hãy vẽ hình minh họa để dễ dàng hình dung bài toán.
  3. Sử dụng định nghĩa, tính chất: Áp dụng các định nghĩa, tính chất của vectơ để giải bài toán.
  4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Mở rộng kiến thức về vectơ

Vectơ là một khái niệm quan trọng trong hình học và vật lý. Việc nắm vững kiến thức về vectơ sẽ giúp bạn giải quyết nhiều bài toán phức tạp hơn. Dưới đây là một số kiến thức mở rộng về vectơ:

  • Tích vô hướng của hai vectơ: Được sử dụng để tính góc giữa hai vectơ, kiểm tra tính vuông góc của hai vectơ.
  • Tích có hướng của hai vectơ: Được sử dụng để tính diện tích của hình bình hành, xác định hướng của vectơ pháp tuyến của mặt phẳng.
  • Ứng dụng của vectơ trong không gian: Vectơ được sử dụng để mô tả vị trí, vận tốc, gia tốc của các vật thể trong không gian.

Bài tập luyện tập thêm

Để củng cố kiến thức về vectơ, bạn có thể luyện tập thêm các bài tập sau:

  • Bài 1: Cho hai vectơ a = (1; -2) và b = (3; 1). Tính a + b, a - b, 2a.
  • Bài 2: Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu AB = DC và AD = BC.
  • Bài 3: Tìm tọa độ của điểm M sao cho AM = 2AB, với A(0; 0) và B(1; 1).

Kết luận

Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 51 trang 17 SBT Toán 10 - Cánh Diều. Hãy luyện tập thường xuyên để nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại giaitoan.edu.vn. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10