Logo Header
  1. Môn Toán
  2. Giải bài 22 trang 67 SBT toán 10 - Cánh diều

Giải bài 22 trang 67 SBT toán 10 - Cánh diều

Giải bài 22 trang 67 SBT Toán 10 - Cánh Diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 22 trang 67 SBT Toán 10 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, với đội ngũ giáo viên giàu kinh nghiệm và nội dung được cập nhật liên tục.

Trong mặt phẳng toạ độ Oxy, cho hai điểm A(4 ; −2), B(10; 4) và điểm M nằm trên trục Ox. Tìm toạ độ điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) có giá trị nhỏ nhất.

Đề bài

Trong mặt phẳng toạ độ Oxy, cho hai điểm A(4 ; −2), B(10; 4) và điểm M nằm trên trục Ox. Tìm toạ độ điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) có giá trị nhỏ nhất.

Phương pháp giải - Xem chi tiếtGiải bài 22 trang 67 SBT toán 10 - Cánh diều 1

Bước 1: Tham số hóa điểm M

Bước 2: Tìm tọa độ điểm I thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \)

Bước 3: Tách vectơ trong biểu thức sao cho xuất hiện vectơ \(\overrightarrow {MI} \) và đánh giá biểu thức

Bước 4: Tìm tọa độ điểm M thỏa mãn giả thiết

Lời giải chi tiết

Do M \( \in Ox\) nên M(a; 0)

Gọi I là trung điểm AB \( \Rightarrow \overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \) và I(7; 1)

Ta có: \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MI} + \overrightarrow {IA} + \overrightarrow {MI} + \overrightarrow {IB} } \right| = \left| {2\overrightarrow {MI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right)} \right| = 2\left| {\overrightarrow {MI} } \right|\)\( = 2MI\)

\(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) có giá trị nhỏ nhất khi và chỉ khi MI nhỏ nhất \( \Leftrightarrow \) M là hình chiếu của I trên Ox

I(7; 1) \( \Rightarrow M(7;0)\)

Vậy M(7; 0) thì \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) có giá trị nhỏ nhất

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 22 trang 67 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 22 trang 67 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 22 trang 67 SBT Toán 10 Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.

Nội dung bài 22 trang 67 SBT Toán 10 - Cánh Diều

Bài 22 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ, tìm tọa độ của vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số thực).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ để giải các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc,...).

Lời giải chi tiết bài 22 trang 67 SBT Toán 10 - Cánh Diều

Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày cách tiếp cận chung và ví dụ minh họa)

Ví dụ minh họa:

Bài tập: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Lời giải:

  1. Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2.
  2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC.
  3. Vậy, AB + AC = 2AM (đpcm).

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em cần:

  • Nắm vững định nghĩa, tính chất của vectơ.
  • Thành thạo các quy tắc cộng, trừ, nhân vectơ với một số thực.
  • Sử dụng hình vẽ để minh họa và tìm ra mối liên hệ giữa các vectơ.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về vectơ trên YouTube.
  • Các diễn đàn, nhóm học tập về Toán học.

Kết luận

Hy vọng rằng với lời giải chi tiết và những lời khuyên hữu ích trên đây, các em sẽ tự tin hơn khi giải bài 22 trang 67 SBT Toán 10 Cánh Diều và các bài tập tương tự. Chúc các em học tập tốt!

Dạng bàiPhương pháp giải
Xác định vectơSử dụng định nghĩa, biểu diễn vectơ bằng hình vẽ.
Phép toán vectơÁp dụng quy tắc cộng, trừ, nhân vectơ.
Chứng minh đẳng thức vectơBiến đổi vế trái để được vế phải hoặc ngược lại.

Tài liệu, đề thi và đáp án Toán 10