Chào mừng các em học sinh đến với lời giải chi tiết bài 22 trang 67 SBT Toán 10 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, với đội ngũ giáo viên giàu kinh nghiệm và nội dung được cập nhật liên tục.
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(4 ; −2), B(10; 4) và điểm M nằm trên trục Ox. Tìm toạ độ điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) có giá trị nhỏ nhất.
Đề bài
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(4 ; −2), B(10; 4) và điểm M nằm trên trục Ox. Tìm toạ độ điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) có giá trị nhỏ nhất.
Phương pháp giải - Xem chi tiết
Bước 1: Tham số hóa điểm M
Bước 2: Tìm tọa độ điểm I thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \)
Bước 3: Tách vectơ trong biểu thức sao cho xuất hiện vectơ \(\overrightarrow {MI} \) và đánh giá biểu thức
Bước 4: Tìm tọa độ điểm M thỏa mãn giả thiết
Lời giải chi tiết
Do M \( \in Ox\) nên M(a; 0)
Gọi I là trung điểm AB \( \Rightarrow \overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \) và I(7; 1)
Ta có: \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MI} + \overrightarrow {IA} + \overrightarrow {MI} + \overrightarrow {IB} } \right| = \left| {2\overrightarrow {MI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right)} \right| = 2\left| {\overrightarrow {MI} } \right|\)\( = 2MI\)
\(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) có giá trị nhỏ nhất khi và chỉ khi MI nhỏ nhất \( \Leftrightarrow \) M là hình chiếu của I trên Ox
Mà I(7; 1) \( \Rightarrow M(7;0)\)
Vậy M(7; 0) thì \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) có giá trị nhỏ nhất
Bài 22 trang 67 SBT Toán 10 Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 22 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày cách tiếp cận chung và ví dụ minh họa)
Bài tập: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Lời giải:
Để giải các bài tập về vectơ một cách hiệu quả, các em cần:
Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng với lời giải chi tiết và những lời khuyên hữu ích trên đây, các em sẽ tự tin hơn khi giải bài 22 trang 67 SBT Toán 10 Cánh Diều và các bài tập tương tự. Chúc các em học tập tốt!
Dạng bài | Phương pháp giải |
---|---|
Xác định vectơ | Sử dụng định nghĩa, biểu diễn vectơ bằng hình vẽ. |
Phép toán vectơ | Áp dụng quy tắc cộng, trừ, nhân vectơ. |
Chứng minh đẳng thức vectơ | Biến đổi vế trái để được vế phải hoặc ngược lại. |