Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 47 trang 62 trong sách bài tập Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn hiểu rõ bản chất của bài toán và áp dụng kiến thức vào thực tế.
Cho hàm số \(h\left( x \right) = \left\{ \begin{array}{l}1\quad \quad x < 0\\2\quad \quad x \ge 0\end{array} \right.\)
Đề bài
Cho hàm số \(h\left( x \right) = \left\{ \begin{array}{l}1\quad \quad x < 0\\2\quad \quad x \ge 0\end{array} \right.\)
a) Điểm nào sau đây thuộc đồ thị hàm số của hàm số trên: \(A\left( {0;0} \right),B\left( { - 1;1} \right),C\left( {2021;1} \right);D\left( {2022;2} \right)\)
b) Chỉ ra hai điểm thuộc đồ thị của hàm số trên có tung độ bằng 2
c) Chỉ ra điểm thuộc đồ thị hàm số trên có hoành độ bằng -2022
Phương pháp giải - Xem chi tiết
Cho\(f\left( x \right) = a{x^2} + bx + c\)
Tại \(x = {x_0}\) thì \(f\left( {{x_0}} \right) = a{x_0}^2 + b{x_0} + c\)
Lời giải chi tiết
a) + Tại \(x = 0 \Rightarrow y = h(x) = 2 \Rightarrow A\left( {0;0} \right) \notin h\left( x \right)\)
+ Tại \(x = - 1 < 0 \Rightarrow y = h(x) = 1 \Rightarrow B\left( { - 1;1} \right) \in h\left( x \right)\)
+ Tại \(x = 2021 > 0 \Rightarrow y = h(x) = 2 \Rightarrow C\left( {2021;1} \right) \notin h\left( x \right)\)
+ Tại \(x = 2022 > 0 \Rightarrow y = h(x) = 2 \Rightarrow D\left( {2022;2} \right) \in h\left( x \right)\)
b) Ta có \(h(x) = 2\) nếu \(x \ge 0\)
Do đó các điểm có hoành độ không âm đều có tung độ bằng 2.
Tập hợp các điểm có tungg độ bằng 2 là \(S = \left\{ {(a;2)|a \ge 0} \right\}\)
Chẳng hạn: \(E\left( {3;2} \right),G\left( {100;2} \right)\)
c) Với \(x = - 2022 < 0\) thì \(y = h(x) = 1 \Rightarrow H\left( { - 2022;1} \right)\)
Bài 47 trang 62 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 47 thường bao gồm các dạng bài tập sau:
Để giải bài 47 trang 62 SBT Toán 10 - Cánh Diều một cách hiệu quả, bạn cần:
Ví dụ minh họa (giả định):
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
Lời giải:
Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}. Do đó, overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} +overrightarrow{MC}. Mặt khác, overrightarrow{AC} =overrightarrow{AM} +overrightarrow{MC}, suy ra overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM}. Thay vào phương trình trên, ta được: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AM}. Từ đó, 2overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC}, hay overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).
Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự sau:
Hy vọng rằng, với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể giải bài 47 trang 62 SBT Toán 10 - Cánh Diều một cách tự tin và hiệu quả. Chúc bạn học tập tốt!