Logo Header
  1. Môn Toán
  2. Giải bài 46 trang 16 SBT toán 10 - Cánh diều

Giải bài 46 trang 16 SBT toán 10 - Cánh diều

Giải bài 46 trang 16 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 46 trang 16 trong sách bài tập Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Cho hai tập hợp (A = left[ { - 4;3} right),B = left( { - 2; + infty } right).Abackslash B) bằng:

Đề bài

Cho hai tập hợp \(A = \left[ { - 4;3} \right),B = \left( { - 2; + \infty } \right).A\backslash B\) bằng:

A. \(\left[ { - 4; - 2} \right)\) B. \(\left\{ { - 4; - 3; - 2} \right\}\) C. \(\left[ {3; + \infty } \right)\) D. \(\left[ { - 4; - 2} \right]\)

Phương pháp giải - Xem chi tiếtGiải bài 46 trang 16 SBT toán 10 - Cánh diều 1

\(A\backslash B = \{ x \in A|x \notin B\} \)

Lời giải chi tiết

Ta có

\(A = \left[ { - 4;3} \right) = \left\{ {x \in \mathbb{R}\left| { - 4 \le x < 3} \right.} \right\};B = \left( { - 2; + \infty } \right) = \left\{ {x \in \mathbb{R}\left| {x > - 2} \right.} \right\}\)

Khi đó \(A\backslash B = \left\{ {x \in \mathbb{R}\left| { - 4 \le x < 3} \right.} \right\}\backslash \left\{ {x \in \mathbb{R}\left| {x > - 2} \right.} \right\} = \left\{ {x \in \mathbb{R}\left| { - 4 \le x < - 2} \right.} \right\} = [ - 4; - 2]\)

Giải bài 46 trang 16 SBT toán 10 - Cánh diều 2

Chọn D

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 46 trang 16 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 46 trang 16 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 46 trang 16 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.

Nội dung bài 46 trang 16 SBT Toán 10 - Cánh Diều

Bài 46 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ, tìm tọa độ của vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số thực).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ để giải các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc,...).

Lời giải chi tiết bài 46 trang 16 SBT Toán 10 - Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài 46, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Lưu ý: Nội dung giải chi tiết sẽ được trình bày cụ thể cho từng câu hỏi trong bài tập. Do giới hạn độ dài, chúng tôi sẽ cung cấp một ví dụ minh họa.)

Ví dụ minh họa: Câu a) Bài 46 trang 16 SBT Toán 10 - Cánh Diều

Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.

Lời giải:

Ta có: AM = AB + BM

Vì M là trung điểm của BC nên BM = MC = 1/2 BC

BC = AC - AB

Do đó, BM = 1/2 (AC - AB)

Suy ra, AM = AB + 1/2 (AC - AB) = 1/2 AB + 1/2 AC

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:

  • Nắm vững định nghĩa, tính chất của vectơ.
  • Thành thạo các phép toán vectơ.
  • Sử dụng hình vẽ để minh họa và tìm ra mối liên hệ giữa các vectơ.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Các bài tập tương tự

Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự sau:

  • Bài 47 trang 16 SBT Toán 10 - Cánh Diều
  • Bài 48 trang 16 SBT Toán 10 - Cánh Diều
  • Các bài tập về vectơ trong sách giáo khoa Toán 10.

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải bài tập vectơ hiệu quả, bạn đã có thể tự tin giải bài 46 trang 16 SBT Toán 10 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục kiến thức Toán học.

Tài liệu, đề thi và đáp án Toán 10