Bài 24 trang 32 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 24 trang 32 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Giá trị nhỏ nhất của biểu thức trên miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge - 2}\\{x + y \le 4}\\{x - 5y \le - 2}\end{array}} \right.\)
Đề bài
Giá trị nhỏ nhất của biểu thức trên miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge - 2}\\{x + y \le 4}\\{x - 5y \le - 2}\end{array}} \right.\)
A. -5 B. -7 C. 1 D. 4
Phương pháp giải - Xem chi tiết
Biểu diễn miền nghiệm của hệ bất phương trình trên hệ tọa độ
Biểu thức F(x;y) đạt max hoặc min chỉ tại một trong các điểm đầu mút nên ta chỉ cần tính giá trị của F(x;y) tại một trong các điểm đó
Lời giải chi tiết
Xác định miền nghiệm của hệ bất phương trình như sau:
- Vẽ ba đường thẳng:
Đường thẳng d1: x – y = – 2 đi qua các điểm có tọa độ (– 2; 0) và (0; 2).
Đường thẳng d2: x + y = 4 đi qua điểm có tọa độ (4; 0) và (0; 4).
Đường thẳng d3: x – 5y = – 2 đi qua các điểm có tọa độ (– 2; 0) và (3; 1).
Điểm O(0;0) thuộc miền nghiệm của BPT \(x - y \ge - 2\) và BPT \(x + y \le 4\), nhưng không thuộc miền nghiệm của BPT \(x - 5y \le - 2\).
Miền nghiệm của hệ bất phương trình là miền tam giác ABC (kể cả các cạnh) với
A(-2; 0), B(1; 3) và C(3; 1) như hình vẽ sau:
Tính giá trị biểu thức F = -2x+y tại các đỉnh của tam giác:
Tại A(– 2; 0), hay x = – 2 và y = 0 thì F = – 2.(– 2) + 0 = 4;
Tại B(1; 3), hay x = 1 và y = 3 thì F = – 2.1 + 3 = 1;
Tại C(3; 1), hay x = 3 và y = 1 thì F = – 2.3 + 1 = – 5;
=> F đạt giá trị nhỏ nhất bằng – 5 tại x = 3, y = 1.
Chọn A
Bài 24 trang 32 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Bài 24 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 24 trang 32 SBT Toán 10 Cánh Diều, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Ví dụ:)
Cho tam giác ABC với A(1;2), B(3;4), C(5;0). Tìm tọa độ của trọng tâm G của tam giác ABC.
Giải:
Trọng tâm G của tam giác ABC có tọa độ là:
G = ( (xA + xB + xC)/3 ; (yA + yB + yC)/3 ) = ( (1+3+5)/3 ; (2+4+0)/3 ) = (3;2)
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:
Để rèn luyện thêm kỹ năng giải bài tập về vectơ, các em học sinh có thể tham khảo các bài tập tương tự trong SBT Toán 10 Cánh Diều và các tài liệu tham khảo khác. Ngoài ra, các em cũng có thể tìm kiếm các video hướng dẫn giải bài tập trên internet.
Khi giải bài tập về vectơ, các em học sinh cần lưu ý:
Bài 24 trang 32 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn khi đối mặt với bài tập này.