Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 52 trang 17 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học Toán 10 một cách tốt nhất.
Cho các tập hợp: \(A = \left[ { - 1;2} \right),B = \left( { - \infty ;1} \right]\)
Đề bài
Cho các tập hợp: \(A = \left[ { - 1;2} \right),B = \left( { - \infty ;1} \right]\)
Xác định \(A \cap B;A \cup B;A\backslash B;B\backslash A;\mathbb{R}\backslash B;{C_\mathbb{R}}A.\)
Lời giải chi tiết
a)
Vậy \(A \cap B = \left\{ {x \in \mathbb{R}\left| { - 1 \le x < 2,x \le 1} \right.} \right\} = \left\{ {x \in \mathbb{R}\left| { - 1 \le x \le 1} \right.} \right\} = \left[ { - 1;1} \right]\)
b)
Vậy \(A \cup B = \left\{ {x \in \mathbb{R}\left| { - 1 \le x < 2,x \le 1} \right.} \right\} = \left\{ {x \in \mathbb{R}\left| {x < 2} \right.} \right\} = \left( { - \infty ;2} \right)\)
c)
Vậy \(A\backslash B = \left\{ {x \in \mathbb{R}\left| { - 1 \le x < 2} \right.} \right\}\backslash \left\{ {x \in \mathbb{R}\left| {x \le 1} \right.} \right\} = \left\{ {x \in \mathbb{R}\left| {1 < x < 2} \right.} \right\} = \left( {1;2} \right)\)
d)
\(B\backslash A = \left\{ {x \in \mathbb{R}\left| {x \le 1} \right.} \right\}\backslash \left\{ {x \in \mathbb{R}\left| { - 1 \le x < 2} \right.} \right\} = \left\{ {x \in \mathbb{R}\left| {x < - 1} \right.} \right\} = \left( { - \infty ; - 1} \right)\)
e)
Vậy \(\mathbb{R}\backslash B = \mathbb{R}\backslash \left\{ {x \in \mathbb{R}\left| {x \le 1} \right.} \right\} = \left\{ {x \in \mathbb{R}\left| {x > 1} \right.} \right\} = \left( {1; + \infty } \right)\)
g)
Vậy \({C_\mathbb{R}}A = \mathbb{R}\backslash \left\{ {x \in \mathbb{R}\left| { - 1 \le x < 2} \right.} \right\} = \{ x \in \mathbb{R}\left| {x < - 1} \right.\) hoặc \(x \ge 2\} = \left( { - \infty ; - 1} \right) \cup \left[ {2; + \infty } \right)\)
Bài 52 trang 17 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 52 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 52 trang 17 SBT Toán 10 - Cánh Diều, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.
Cho hai điểm A(1; 2) và B(3; 4). Tìm tọa độ của vectơ AB.
Lời giải:
Vectơ AB có tọa độ là (3 - 1; 4 - 2) = (2; 2).
Cho vectơ a = (1; -2) và vectơ b = (3; 1). Tính vectơ a + b.
Lời giải:
Vectơ a + b có tọa độ là (1 + 3; -2 + 1) = (4; -1).
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Để củng cố kiến thức về vectơ, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả, bạn đã có thể tự tin giải bài 52 trang 17 SBT Toán 10 - Cánh Diều. Chúc bạn học tốt môn Toán 10!
Công thức quan trọng | Mô tả |
---|---|
Vectơ AB | (xB - xA; yB - yA) |
a + b | (xA + xB; yA + yB) |
k.a | (kxA; kyA) |