Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 27 sách bài tập Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Mặt đáy của một hộp sữa có dạng hình tròn bán kính 4 cm. Tính diện tích mặt đáy của hộp sữa.
Đề bài
Mặt đáy của một hộp sữa có dạng hình tròn bán kính 4 cm. Tính diện tích mặt đáy của hộp sữa.
a) Có thể sử dụng số thập phân hữu hạn ghi chính xác diện tích mặt đáy của hộp sữa được không? Vì sao?
b) Bạn Hòa và bạn Bình lần lượt cho kết quả tính diện tích của mặt đáy hộp sữa đó là \({S_1} = 49,6c{m^2}\) và \({S_2} = 50,24c{m^2}\). Bạn nào cho kết quả chính xác hơn?
Phương pháp giải - Xem chi tiết
Diện tích hình tròn là \(S = \pi {R^2}\) với \(R\)là bán kính hình tròn
So sánh \({S_1},{S_2}\) và số chính xác diện tích hình tròn. Kết quả nào gần với số đúng hơn thì chính xác hơn.
Lời giải chi tiết
Diện tích mặt đáy hộp sữa dạng hình tròn với bán kính \(R = 4\)(cm) là \(S = \pi {.4^2} = 16\pi \left( {c{m^2}} \right)\)
a) Vì \(\pi = 3,141592653...\) là số vô tỉ nên diện tích S cũng là số vô tỉ, do đó không thể sử dụng số thập phân hữu hạn để ghi chính xác diện tích mặt đáy của hộp sữa
b) So sánh \({S_1},{S_2}\) và số chính xác diện tích mặt đáy, ta có: \({S_1} < {S_2} < 50,26548... = 16\pi \) nên bạn Bình cho kết quả chính xác hơn
Bài 3 trang 27 sách bài tập Toán 10 - Cánh Diều thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các khái niệm như tập hợp, phần tử của tập hợp, tập con, tập hợp rỗng, và các phép toán hợp, giao, hiệu, bù để giải quyết các bài toán cụ thể.
Bài 3 thường bao gồm các dạng bài tập sau:
Để xác định các tập hợp, bạn cần nắm vững định nghĩa của từng loại tập hợp. Ví dụ:
Khi xác định các tập hợp, bạn cần chú ý đến việc liệt kê các phần tử một cách chính xác và không bỏ sót phần tử nào.
Để chứng minh đẳng thức tập hợp, bạn có thể sử dụng các phương pháp sau:
Khi chứng minh đẳng thức tập hợp, bạn cần trình bày các bước giải một cách logic và rõ ràng.
Để giải các bài toán ứng dụng, bạn cần:
Ví dụ: Cho A = {1, 2, 3} và B = {2, 4, 5}. Tìm A ∪ B, A ∩ B, A \ B, và B \ A.
Giải:
Bài 3 trang 27 sách bài tập Toán 10 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về tập hợp và các phép toán trên tập hợp. Hy vọng rằng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán 10.