Logo Header
  1. Môn Toán
  2. Giải bài 54 trang 100 SBT toán 10 - Cánh diều

Giải bài 54 trang 100 SBT toán 10 - Cánh diều

Giải bài 54 trang 100 SBT Toán 10 - Cánh Diều

Bài 54 trang 100 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 54 trang 100 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Cho hình bình hành ABCD. Lấy các điểm M, N, P thoả mãn \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} ,\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} ,\overrightarrow {AP} = \frac{1}{3}\overrightarrow {AD} \). Đặt \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \). Biểu thị các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {NP} \) theo các vectơ \(\overrightarrow a ,\overrightarrow b \) và chứng minh ba điểm M, N,

Đề bài

Cho hình bình hành ABCD. Lấy các điểm M, N, P thoả mãn \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} ,\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} ,\overrightarrow {AP} = \frac{1}{3}\overrightarrow {AD} \). Đặt \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \). Biểu thị các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {NP} \) theo các vectơ \(\overrightarrow a ,\overrightarrow b \) và chứng minh ba điểm M, N, P thẳng hàng.

Phương pháp giải - Xem chi tiếtGiải bài 54 trang 100 SBT toán 10 - Cánh diều 1

Bước 1: Xác định vị trí các điểm M, N, P trên các cạnh AB, AC, AD

Bước 2: Sử dụng các quy tắc để biểu diễn các vectơ theo \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \)

Bước 3: Sử dụng điều kiện \(\overrightarrow {MN} = k\overrightarrow {NP} \) chứng minh M, N, P thẳng hàng.

Lời giải chi tiết

Giải bài 54 trang 100 SBT toán 10 - Cánh diều 2

Theo giả thiết, M là trung điểm AB, N nằm giữa AC, P nằm giữa A D

a) Ta có:

+ \(\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} \). Theo quy tắc hình bình hành, \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) \( \Rightarrow \overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\)

+ \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} \)mà \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\), \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}\overrightarrow a \)

nên \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right) - \frac{1}{2}\overrightarrow a = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \)

+ \(\overrightarrow {NP} = \overrightarrow {AP} - \overrightarrow {AN} \) mà \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\), \(\overrightarrow {AP} = \frac{1}{3}\overrightarrow {AD} = \frac{1}{3}\overrightarrow b \)

nên \(\overrightarrow {NP} = \overrightarrow {AP} - \overrightarrow {AN} = \frac{1}{3}\overrightarrow b - \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right) = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \)

Vậy \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\); \(\overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \); \(\overrightarrow {NP} = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \)

b) Theo a, \(\overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \); \(\overrightarrow {NP} = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \) \( \Rightarrow \overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b = \frac{3}{2}\left( { - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b } \right) = \frac{3}{2}\overrightarrow {NP} \)

\( \Rightarrow \overrightarrow {MN} \) và \(\overrightarrow {NP} \) cùng phương. Vậy 3 điểm M, N, P thẳng hàng.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 54 trang 100 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 54 trang 100 SBT Toán 10 - Cánh Diều: Tổng quan và Phương pháp giải

Bài 54 trang 100 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa vectơ: Hiểu rõ khái niệm vectơ, các yếu tố của vectơ (điểm gốc, điểm cuối, độ dài, hướng).
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực vectơ.
  • Ứng dụng của vectơ trong hình học: Biểu diễn các điểm, đường thẳng, đoạn thẳng bằng vectơ.

Nội dung bài toán

Bài 54 thường xoay quanh việc sử dụng vectơ để chứng minh các tính chất hình học, tìm tọa độ của các điểm, hoặc giải các bài toán liên quan đến hình học phẳng và không gian. Cụ thể, bài toán có thể yêu cầu:

  • Chứng minh hai vectơ cùng phương, ngược phương, vuông góc.
  • Tìm tọa độ của một điểm khi biết tọa độ của các điểm khác và mối quan hệ giữa chúng thông qua vectơ.
  • Tính độ dài của một vectơ.
  • Xác định vị trí tương đối của các điểm trong không gian.

Lời giải chi tiết bài 54 trang 100 SBT Toán 10 - Cánh Diều

Để giải bài 54 trang 100 SBT Toán 10 Cánh Diều, chúng ta sẽ tiến hành theo các bước sau:

  1. Phân tích đề bài: Đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán.
  2. Vẽ hình: Vẽ hình minh họa bài toán để dễ dàng hình dung và tìm ra hướng giải.
  3. Chọn hệ tọa độ: Chọn một hệ tọa độ thích hợp để biểu diễn các điểm và vectơ trong không gian.
  4. Biểu diễn các vectơ: Biểu diễn các vectơ liên quan đến bài toán bằng tọa độ.
  5. Thực hiện các phép toán vectơ: Sử dụng các phép toán vectơ để giải quyết bài toán.
  6. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa (giả định bài toán yêu cầu chứng minh ba điểm A, B, C thẳng hàng):

Giả sử A(xA, yA), B(xB, yB), C(xC, yC). Để chứng minh A, B, C thẳng hàng, ta cần chứng minh vectơ AB và vectơ AC cùng phương. Điều này có nghĩa là tồn tại một số thực k khác 0 sao cho:

AB = k.AC

(xB - xA, yB - yA) = k.(xC - xA, yC - yA)

Từ đó, ta có hệ phương trình:

xB - xA = k.(xC - xA)

yB - yA = k.(yC - yA)

Giải hệ phương trình này để tìm k. Nếu tìm được k khác 0, thì A, B, C thẳng hàng.

Mở rộng và Bài tập tương tự

Sau khi nắm vững phương pháp giải bài 54, các em có thể áp dụng để giải các bài tập tương tự. Một số bài tập gợi ý:

  • Chứng minh hai đường thẳng song song, vuông góc.
  • Tìm giao điểm của hai đường thẳng.
  • Tính diện tích của một hình đa giác.

Lưu ý khi giải bài tập về vectơ

Khi giải bài tập về vectơ, các em cần lưu ý:

  • Vẽ hình minh họa để dễ dàng hình dung bài toán.
  • Sử dụng đúng các công thức và định lý về vectơ.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Kết luận

Bài 54 trang 100 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em sẽ tự tin hơn khi đối mặt với bài toán này và các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 10