Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 31 sách bài tập Toán 10 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải bài tập Toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 8 trang 31 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho mẫu số liệu: 1 3 6 8 9 12
Đề bài
Cho mẫu số liệu: 1 3 6 8 9 12
a) Số trung bình cộng của mẫu số liệu trên là:
A. 6 B. 6,5 C. 7 D. 8
b) Trung vị của mẫu số liệu trên là:
A. 6 B. 6,5 C. 7 D. 8
c) Tứ phân vị của mẫu số liệu trên là:
A. \({Q_1} = 3;{Q_2} = 6,5;{Q_3} = 9\) B. \({Q_1} = 1;{Q_2} = 6,5;{Q_3} = 12\)
C. \({Q_1} = 6;{Q_2} = 7;{Q_3} = 8\) D. \({Q_1} = 3;{Q_2} = 7;{Q_3} = 9\)
Phương pháp giải - Xem chi tiết
- Dùng công thức tính số trung bình: \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)
- Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu \(n\), tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
Lời giải chi tiết
a) Số trung bình của mẫu số liệu là: \(\overline x = \frac{{1 + 3 + 6 + 8 + 9 + 12}}{6} = 6,5\)
Chọn B.
b) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được: 1 3 6 8 9 12
Vì \(n = 6\) là số chẵn nên tứ phân vị thứ hai là: \({Q_2} = \left( {6 + 8} \right):2 = 7\) là tứ phân vị
Chọn C.
c)
+ Tứ phân vị thứ nhất là trung vị của 3 số đầu tiên của mẫu số liệu: \({Q_1} = 3\)
+ Tứ phân vị thứ ba là trung vị của 3 số cuối của mẫu số liệu: \({Q_3} = 9\)
Chọn D.
Bài 8 trang 31 sách bài tập Toán 10 Cánh Diều thuộc chương trình học về Vectơ trong mặt phẳng. Bài tập này tập trung vào việc vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán cụ thể.
Bài 8 bao gồm các dạng bài tập sau:
Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính a + b và a - b.
Giải:
a + b = (1 + (-3); 2 + 4) = (-2; 6)
a - b = (1 - (-3); 2 - 4) = (4; -2)
Cho vectơ a = (2; -1). Tính 3a và -2a.
Giải:
3a = 3(2; -1) = (6; -3)
-2a = -2(2; -1) = (-4; 2)
Chứng minh rằng nếu a = b thì ma = mb với mọi số thực m.
Giải:
Giả sử a = b, tức là a = (x; y) và b = (x; y).
Khi đó, ma = m(x; y) = (mx; my) và mb = m(x; y) = (mx; my).
Vậy ma = mb.
Hy vọng với lời giải chi tiết và hướng dẫn giải bài 8 trang 31 sách bài tập Toán 10 Cánh Diều trên đây, các bạn học sinh đã có thể tự tin hơn trong việc học tập và giải quyết các bài toán về vectơ. Chúc các bạn học tốt!