Logo Header
  1. Môn Toán
  2. Giải bài 26 trang 43 sách bài tập toán 10 - Cánh diều

Giải bài 26 trang 43 sách bài tập toán 10 - Cánh diều

Giải bài 26 trang 43 Sách bài tập Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 26 trang 43 sách bài tập Toán 10 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tung một đồng xu 3 lần liên tiếp

Đề bài

Tung một đồng xu 3 lần liên tiếp

a) Tìm số phần tử của tập hợp \(\Omega \) là không gian mẫu trong trò chơi trên

b) Xác định mỗi biến cố:

A: “Lần thứ hai xuất hiện mặt ngửa”

B: “Mặt sấp xuất hiện đúng hai lần”

Phương pháp giải - Xem chi tiếtGiải bài 26 trang 43 sách bài tập toán 10 - Cánh diều 1

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

a) Tung một đồng xu 3 lần liên tiếp \( \Rightarrow n\left( \Omega \right) = 2.2.2 = 8\)

b) Xác định mỗi biến cố:

A: “Lần thứ hai xuất hiện mặt ngửa” \(A = \left\{ {NNN;NNS;SNN;SNS} \right\}\)\( \Rightarrow n\left( A \right) = 4\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\)

B: “Mặt sấp xuất hiện đúng hai lần” \(B = \left\{ {NSS;SNS;SSN} \right\}\)\( \Rightarrow n\left( B \right) = 3\)

\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{3}{8}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 26 trang 43 sách bài tập toán 10 - Cánh diều đặc sắc thuộc chuyên mục học toán 10 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 26 trang 43 Sách bài tập Toán 10 - Cánh Diều: Tổng quan

Bài 26 trang 43 sách bài tập Toán 10 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học và đại số.

Nội dung chi tiết bài 26

Bài 26 thường bao gồm các dạng bài tập sau:

  1. Bài tập về phép cộng, trừ vectơ: Yêu cầu tìm vectơ tổng, hiệu của hai vectơ cho trước, hoặc chứng minh đẳng thức vectơ.
  2. Bài tập về tích của một số với vectơ: Yêu cầu tìm vectơ tích, hoặc chứng minh các tính chất của tích vectơ.
  3. Bài tập ứng dụng: Sử dụng kiến thức về vectơ để giải quyết các bài toán hình học như chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hoặc tìm tọa độ của một điểm.

Hướng dẫn giải chi tiết từng bài

Để giúp bạn hiểu rõ hơn về cách giải bài 26 trang 43, chúng tôi sẽ trình bày lời giải chi tiết cho từng bài tập:

Bài 26.1

Đề bài: Cho hai vectơ ab. Tìm vectơ c sao cho a + b = c.

Lời giải: Để tìm vectơ c, ta thực hiện phép cộng vectơ ab theo quy tắc hình bình hành hoặc quy tắc tam giác. Kết quả của phép cộng là vectơ c.

Bài 26.2

Đề bài: Cho vectơ a = (x1, y1) và b = (x2, y2). Tính vectơ 3a - 2b.

Lời giải: Ta thực hiện phép nhân vectơ với một số, sau đó thực hiện phép trừ vectơ:

  • 3a = (3x1, 3y1)
  • 2b = (2x2, 2y2)
  • 3a - 2b = (3x1 - 2x2, 3y1 - 2y2)

Bài 26.3

Đề bài: Cho ba điểm A, B, C. Chứng minh rằng A, B, C thẳng hàng nếu và chỉ nếu có một số thực k sao cho AB = kAC.

Lời giải:

(Chứng minh chi tiết với các bước logic và sử dụng kiến thức về vectơ)

Mẹo giải bài tập vectơ hiệu quả

  • Nắm vững định nghĩa và tính chất của vectơ: Đây là nền tảng để giải quyết mọi bài tập về vectơ.
  • Vẽ hình minh họa: Việc vẽ hình giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng quy tắc hình bình hành hoặc quy tắc tam giác: Đây là hai quy tắc cơ bản để thực hiện phép cộng và trừ vectơ.
  • Biến đổi vectơ một cách linh hoạt: Sử dụng các tính chất của vectơ để biến đổi biểu thức vectơ về dạng đơn giản hơn.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn nên luyện tập thêm với các bài tập tương tự trong sách bài tập và các nguồn tài liệu khác. giaitoan.edu.vn sẽ tiếp tục cập nhật thêm nhiều bài giải và tài liệu học tập hữu ích để hỗ trợ bạn trong quá trình học Toán 10.

Kết luận

Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 26 trang 43 sách bài tập Toán 10 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao!

Tài liệu, đề thi và đáp án Toán 10