Logo Header
  1. Môn Toán
  2. Giải bài 55 trang 100 SBT toán 10 - Cánh diều

Giải bài 55 trang 100 SBT toán 10 - Cánh diều

Giải bài 55 trang 100 SBT Toán 10 - Cánh Diều

Bài 55 trang 100 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho tam giác ABC. Lấy các điểm D, E, M, N thoả mãn \(\overrightarrow {AD} = \frac{1}{3}\overrightarrow {AB} ,\overrightarrow {AE} = \frac{2}{5}\overrightarrow {AC} ,\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} ,\overrightarrow {AN} = k\overrightarrow {AM} \)

Đề bài

Cho tam giác ABC. Lấy các điểm D, E, M, N thoả mãn \(\overrightarrow {AD} = \frac{1}{3}\overrightarrow {AB} ,\overrightarrow {AE} = \frac{2}{5}\overrightarrow {AC} ,\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} ,\overrightarrow {AN} = k\overrightarrow {AM} \)

với k là số thực. Biểu thị các vectơ \(\overrightarrow {AN} ,\overrightarrow {DE} ,\overrightarrow {EN} \) theo các vectơ \(\overrightarrow a = \overrightarrow {AB} ,\overrightarrow b = \overrightarrow {AC} \) và tìm k để ba điểm D, E, N thẳng hàng.

Phương pháp giải - Xem chi tiếtGiải bài 55 trang 100 SBT toán 10 - Cánh diều 1

Bước 1: Xác định vị trí các điểm D, E, M, N trên các cạnh AB, AC, BC, AM

Bước 2: Sử dụng các quy tắc để biểu diễn các vectơ theo \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \)

Bước 3: Sử dụng điều kiện \(\overrightarrow {EN} = t\overrightarrow {DE} \) chứng minh D, E, N thẳng hàng.

Lời giải chi tiết

Giải bài 55 trang 100 SBT toán 10 - Cánh diều 2

Theo giả thiết D, E, M, N nằm giữa 2 đầu mút các cạnh tương ứng AB, AC, BC, AM

a) Ta có: \(\overrightarrow {AD} = \frac{1}{3}\overrightarrow {AB} = \frac{1}{3}\overrightarrow a \); \(\overrightarrow {AE} = \frac{2}{5}\overrightarrow {AC} = \frac{2}{5}\overrightarrow b \);

\(\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} \Leftrightarrow \overrightarrow {AM} - \overrightarrow {AB} = \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) \Leftrightarrow \overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) \Leftrightarrow \overrightarrow {AM} = \frac{2}{3}\overrightarrow a + \frac{1}{3}\overrightarrow b \)

+ \(\overrightarrow {AN} = k\overrightarrow {AM} = k\left( {\frac{2}{3}\overrightarrow a + \frac{1}{3}\overrightarrow b } \right) = \frac{{2k}}{3}\overrightarrow a + \frac{k}{3}\overrightarrow b \)

+ \(\overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {AD} = - \frac{1}{3}\overrightarrow a + \frac{2}{5}\overrightarrow b \)

+ \(\overrightarrow {EN} = \overrightarrow {AN} - \overrightarrow {AE} = k\left( {\frac{2}{3}\overrightarrow a + \frac{1}{3}\overrightarrow b } \right) - \frac{2}{5}\overrightarrow b = \frac{{2k}}{3}\overrightarrow a + \frac{{5k - 6}}{{15}}\overrightarrow b \)

b) D, E, N thẳng hàng khi và chỉ khi \(\overrightarrow {EN} = t\overrightarrow {DE} \) \( \Leftrightarrow \frac{{2k}}{3}\overrightarrow a + \frac{{5k - 6}}{{15}}\overrightarrow b = t\left( { - \frac{1}{3}\overrightarrow a + \frac{2}{5}\overrightarrow b } \right)\)

\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{2k}}{3} = - \frac{t}{3}\\\frac{{5k - 6}}{{15}} = \frac{{2t}}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{2}{3}k + \frac{1}{3}t = 0\\\frac{1}{3}k - \frac{2}{5}t = \frac{2}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = \frac{6}{{17}}\\t = - \frac{{12}}{{17}}\end{array} \right.\)

Vậy với \(k = \frac{6}{{17}}\) thì D, E, N thẳng hàng.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 55 trang 100 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 55 trang 100 SBT Toán 10 - Cánh Diều: Hướng dẫn chi tiết và lời giải

Bài 55 trang 100 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để tính góc giữa hai vectơ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, giải các bài toán về hình học phẳng và không gian.

Nội dung bài tập 55 trang 100 SBT Toán 10 - Cánh Diều

Bài tập 55 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ trong hình.
  2. Thực hiện các phép toán vectơ để tìm các vectơ mới.
  3. Sử dụng tích vô hướng để tính góc giữa các vectơ.
  4. Chứng minh các đẳng thức vectơ.
  5. Giải các bài toán liên quan đến hình học phẳng và không gian.

Lời giải chi tiết bài 55 trang 100 SBT Toán 10 - Cánh Diều

Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi xin trình bày lời giải chi tiết như sau:

(Ở đây sẽ là lời giải chi tiết của bài tập 55, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Lời giải sẽ được trình bày một cách logic và dễ hiểu, sử dụng các ký hiệu toán học chính xác.)

Ví dụ minh họa

Để minh họa cho phương pháp giải bài tập này, chúng ta hãy xem xét một ví dụ cụ thể:

(Ở đây sẽ là một ví dụ tương tự bài 55, được giải chi tiết để học sinh có thể tham khảo và áp dụng vào các bài tập khác.)

Các bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, học sinh có thể tham khảo các bài tập tương tự sau:

  • Bài 56 trang 100 SBT Toán 10 Cánh Diều
  • Bài 57 trang 101 SBT Toán 10 Cánh Diều
  • Bài 58 trang 101 SBT Toán 10 Cánh Diều

Lưu ý khi giải bài tập về vectơ

Khi giải bài tập về vectơ, học sinh cần lưu ý những điều sau:

  • Nắm vững định nghĩa và các phép toán vectơ.
  • Sử dụng tích vô hướng một cách linh hoạt để tính góc giữa các vectơ.
  • Vẽ hình minh họa để dễ dàng hình dung bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Kết luận

Bài 55 trang 100 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải bài tập. Hy vọng với lời giải chi tiết và các lưu ý trên, học sinh có thể tự tin giải bài tập này và đạt kết quả tốt trong môn Toán 10.

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng, xác định bởi điểm gốc và điểm cuối.
Tích vô hướngMột phép toán giữa hai vectơ, cho ra một số thực.

Tài liệu, đề thi và đáp án Toán 10