Logo Header
  1. Môn Toán
  2. Giải bài 51 trang 62 SBT toán 10 - Cánh diều

Giải bài 51 trang 62 SBT toán 10 - Cánh diều

Giải bài 51 trang 62 SBT Toán 10 - Cánh Diều

Bài 51 trang 62 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 51 trang 62 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Giải các bất phương trình bậc hai sau:

Đề bài

Giải các bất phương trình bậc hai sau:

a) \(4{x^2} - 9x + 5 \le 0\)

b) \( - 3{x^2} - x + 4 > 0\)

c) \(36{x^2} - 12x + 1 > 0\)

d) \( - 7{x^2} + 5x + 2 < 0\)

Phương pháp giải - Xem chi tiếtGiải bài 51 trang 62 SBT toán 10 - Cánh diều 1

Sử dụng định lý về dấu của tam thức bậc hai

Bước 1: Xác định dấu của hệ số \(a\) và tìm nghiệm của \(f\left( x \right)\) (nếu có)

Bước 2: Sử dụng định lý về dấu của tam thức bậc hai để tìm tập hợp các giá trị của của x sao cho \(f\left( x \right)\) mang dấu thỏa mãn bất phương trình

+ Nếu \(\Delta < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\)

+ Nếu \(\Delta = 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)

+ Nếu \(\Delta > 0\) thì \(f\left( x \right)\) có hai nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:

\(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x\) thuộc các khoảng \(\left( { - \infty ;{x_1}} \right) \cup \left( {{x_2}; + \infty } \right)\)

\(f\left( x \right)\) trái dấu với hệ số \(a\) với mọi \(x\) thuộc khoảng \(\left( {x{ & _1};{x_2}} \right)\)

Lời giải chi tiết

a) \(4{x^2} - 9x + 5 \le 0\)

Tam thức bậc hai \(4{x^2} - 9x + 5\) có hai nghiệm \({x_1} = 1;{x_2} = \frac{5}{4}\) và có hệ số \(a = 4 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai

Giải bài 51 trang 62 SBT toán 10 - Cánh diều 2

Ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \(4{x^2} - 9x + 5\) mang dấu “-” là \(\left[ {1;\frac{5}{4}} \right]\)

b) \( - 3{x^2} - x + 4 > 0\)

Tam thức bậc hai \( - 3{x^2} - x + 4\) có hai nghiệm \({x_1} = - \frac{4}{3};{x_2} = 1\) và có hệ số \(a = - 3 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai

Giải bài 51 trang 62 SBT toán 10 - Cánh diều 3

Ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 3{x^2} - x + 4\) mang dấu “+” là \(\left( { - \frac{4}{3};1} \right)\)

c) \(36{x^2} - 12x + 1 > 0\)

Tam thức bậc hai \(36{x^2} - 12x + 1\) có nghiệm kép \({x_0} = \frac{1}{6}\) và có hệ số \(a = 36 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \(36{x^2} - 12x + 1\) mang dấu “+” là \(\mathbb{R}\backslash \left\{ {\frac{1}{6}} \right\}\)

d) \( - 7{x^2} + 5x + 2 < 0\)

Tam thức bậc hai \( - 7{x^2} + 5x + 2\) có hai nghiệm \({x_1} = \frac{{ - 2}}{7};{x_2} = 1\) và có hệ số \(a = - 7 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai

Giải bài 51 trang 62 SBT toán 10 - Cánh diều 4

Ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 7{x^2} + 5x + 2\) mang dấu “-” là \(\left( { - \infty ;\frac{{ - 2}}{7}} \right) \cup \left( {1; + \infty } \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 51 trang 62 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 51 trang 62 SBT Toán 10 - Cánh Diều: Tổng quan và Phương pháp

Bài 51 trang 62 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để xác định góc giữa hai vectơ, kiểm tra tính vuông góc.
  • Hệ tọa độ trong không gian: Biểu diễn vectơ bằng tọa độ và thực hiện các phép toán vectơ trong hệ tọa độ.

Bài 51 thường yêu cầu học sinh:

  1. Tìm tọa độ của một vectơ.
  2. Thực hiện các phép toán vectơ.
  3. Chứng minh các đẳng thức vectơ.
  4. Ứng dụng vectơ để giải các bài toán hình học.

Lời giải chi tiết bài 51 trang 62 SBT Toán 10 - Cánh Diều

Để cung cấp lời giải chi tiết, chúng ta cần xem xét nội dung cụ thể của bài toán. Giả sử bài toán yêu cầu:

Cho hình hộp ABCD.A'B'C'D'. Gọi M là trung điểm của cạnh AB. Chứng minh rằng: vectơ AM = 1/2 vectơ AB.

Lời giải:

Vì M là trung điểm của cạnh AB, theo định nghĩa trung điểm, ta có:

vectơ AM = vectơ MB

vectơ AB = vectơ AM + vectơ MB

Suy ra vectơ AB = vectơ AM + vectơ AM = 2vectơ AM

Do đó, vectơ AM = 1/2 vectơ AB (đpcm)

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 51, SBT Toán 10 Cánh Diều còn có nhiều bài tập tương tự về vectơ. Để giải quyết các bài tập này, học sinh có thể áp dụng các phương pháp sau:

  • Sử dụng định nghĩa vectơ: Xác định điểm gốc, điểm cuối và hướng của vectơ.
  • Sử dụng các phép toán vectơ: Cộng, trừ, nhân với một số thực để biến đổi các vectơ.
  • Sử dụng tích vô hướng: Tính góc giữa hai vectơ, kiểm tra tính vuông góc.
  • Sử dụng hệ tọa độ: Biểu diễn vectơ bằng tọa độ và thực hiện các phép toán vectơ trong hệ tọa độ.
  • Phân tích hình học: Sử dụng các tính chất hình học để tìm mối liên hệ giữa các vectơ.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, học sinh nên luyện tập thêm các bài tập sau:

  • Bài 52, 53, 54 trang 62-64 SBT Toán 10 Cánh Diều.
  • Các bài tập tương tự trong các sách bài tập khác.
  • Các bài tập trực tuyến trên các trang web học toán.

Kết luận

Bài 51 trang 62 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học. Bằng cách nắm vững các khái niệm cơ bản, áp dụng các phương pháp giải phù hợp và luyện tập thường xuyên, học sinh có thể giải quyết bài tập này một cách dễ dàng và hiệu quả.

Giaitoan.edu.vn hy vọng rằng lời giải chi tiết và các hướng dẫn trên sẽ giúp các em học sinh học tốt môn Toán 10.

Tài liệu, đề thi và đáp án Toán 10