Logo Header
  1. Môn Toán
  2. Giải bài 71 trang 106 SBT toán 10 - Cánh diều

Giải bài 71 trang 106 SBT toán 10 - Cánh diều

Giải bài 71 trang 106 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 71 trang 106 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Cho \(\alpha \) thoả mãn \(\sin \alpha = \frac{3}{5}\). Tính cos\(\alpha \), tan\(\alpha \), cot\(\alpha \), sin(90° - \(\alpha \)), cos(90° - \(\alpha \)), sin(180° – \(\alpha \)),

Đề bài

Cho \(\alpha \) thoả mãn \(\sin \alpha = \frac{3}{5}\). Tính cos\(\alpha \), tan\(\alpha \), cot\(\alpha \), sin(90° - \(\alpha \)), cos(90° - \(\alpha \)), sin(180° – \(\alpha \)),

cos(180° – \(\alpha \)) trong các trường hợp sau:

a) 0° < \(\alpha \) < 90°

b) 90° < \(\alpha \) < 180°

Phương pháp giải - Xem chi tiếtGiải bài 71 trang 106 SBT toán 10 - Cánh diều 1

Bước 1: Xét dấu các giá trị lượng giác của góc \(\alpha \) trong từng trường hợp

Bước 2: Sử dụng các công thức lượng giác cơ bản và giá trị lượng giác của các góc phụ nhau, bù nhau để tính các giá trị tương ứng

Lời giải chi tiết

a) Theo giả thiết, 0° < \(\alpha \) < 90° \( \Rightarrow \cos \alpha > 0,\tan \alpha > 0,\cot \alpha > 0\)

+ Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{3}{5}} \right)^2} = \frac{{16}}{{25}}\) \( \Rightarrow \cos \alpha = \frac{4}{5}\)

+ \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{3}{4};\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{4}{3}\)

+ \(\sin ({90^0} - \alpha ) = \cos \alpha = \frac{4}{5};\cos ({90^0} - \alpha ) = \sin \alpha = \frac{3}{5}\)

+ \(\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha = \frac{3}{5};\cos \left( {{{180}^0} - \alpha } \right) = - \cos \alpha = - \frac{4}{5}\)

b) Theo giả thiết, 90° < \(\alpha \) < 180° \( \Rightarrow \cos \alpha < 0,\tan \alpha < 0,\cot \alpha < 0\)

+ Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{3}{5}} \right)^2} = \frac{{16}}{{25}}\) \( \Rightarrow \cos \alpha = - \frac{4}{5}\)

+ \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = - \frac{3}{4};\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = - \frac{4}{3}\)

+ \(\sin ({90^0} - \alpha ) = \cos \alpha = - \frac{4}{5};\cos ({90^0} - \alpha ) = \sin \alpha = \frac{3}{5}\)

+ \(\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha = \frac{3}{5};\cos \left( {{{180}^0} - \alpha } \right) = - \cos \alpha = \frac{4}{5}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 71 trang 106 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 71 trang 106 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 71 trang 106 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 71 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các quy tắc và tính chất của vectơ để chứng minh một đẳng thức vectơ cho trước.
  • Tìm vectơ: Yêu cầu học sinh tìm một vectơ thỏa mãn các điều kiện cho trước, ví dụ như tìm vectơ tổng, vectơ hiệu, hoặc vectơ tích.
  • Ứng dụng vectơ vào hình học: Sử dụng vectơ để chứng minh các tính chất hình học, ví dụ như chứng minh hai đường thẳng song song, chứng minh hai tam giác bằng nhau, hoặc chứng minh một điểm nằm trên một đường thẳng.

Lời giải chi tiết bài 71 trang 106 SBT Toán 10 - Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài 71. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.

Phần a: Chứng minh đẳng thức vectơ

Để chứng minh một đẳng thức vectơ, bạn có thể sử dụng các quy tắc và tính chất của vectơ, ví dụ như:

  • Quy tắc cộng vectơ: a + b = b + a
  • Quy tắc kết hợp: (a + b) + c = a + (b + c)
  • Tính chất phân phối: k(a + b) = ka + kb (với k là một số thực)

Ví dụ, để chứng minh a + b = c, bạn có thể biến đổi vế trái để được vế phải, hoặc biến đổi vế phải để được vế trái.

Phần b: Tìm vectơ

Để tìm một vectơ, bạn có thể sử dụng các phép toán vectơ, ví dụ như:

  • Phép cộng vectơ: c = a + b
  • Phép trừ vectơ: c = a - b
  • Phép nhân vectơ với một số: c = ka

Ví dụ, để tìm vectơ c biết a = (1, 2) và b = (3, 4), bạn có thể thực hiện phép cộng vectơ như sau: c = a + b = (1 + 3, 2 + 4) = (4, 6).

Phần c: Ứng dụng vectơ vào hình học

Để sử dụng vectơ vào việc chứng minh các tính chất hình học, bạn có thể sử dụng các khái niệm như:

  • Hai vectơ cùng phương: Hai vectơ ab được gọi là cùng phương nếu tồn tại một số thực k sao cho a = kb.
  • Hai vectơ cùng hướng: Hai vectơ ab được gọi là cùng hướng nếu tồn tại một số thực k > 0 sao cho a = kb.
  • Hai vectơ ngược hướng: Hai vectơ ab được gọi là ngược hướng nếu tồn tại một số thực k < 0 sao cho a = kb.

Ví dụ, để chứng minh hai đường thẳng song song, bạn có thể chứng minh rằng vectơ chỉ phương của hai đường thẳng cùng phương.

Mẹo giải bài tập vectơ

  • Vẽ hình minh họa: Việc vẽ hình minh họa sẽ giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng các quy tắc và tính chất của vectơ: Nắm vững các quy tắc và tính chất của vectơ là điều kiện cần thiết để giải quyết các bài tập liên quan đến vectơ.
  • Biến đổi đại số: Sử dụng các phép biến đổi đại số để đơn giản hóa biểu thức vectơ và tìm ra kết quả.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức về vectơ, bạn có thể làm thêm các bài tập tương tự trong SBT Toán 10 - Cánh Diều hoặc các tài liệu tham khảo khác.

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 71 trang 106 SBT Toán 10 - Cánh Diều và các bài tập liên quan đến vectơ. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10