Bài 41 trang 60 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 41 trang 60 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\sqrt {7 - 2x} + x = 2\)
b) \(\sqrt { - 2{x^2} + 7x + 1} + 3x = 7\)
Phương pháp giải - Xem chi tiết
Bước 1: Đưa về PT dạng \(\sqrt {f\left( x \right)} = g\left( x \right)\)
Bước 2: \(\sqrt {f\left( x \right)} = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\end{array} \right.\)
Lời giải chi tiết
a) \(\sqrt {7 - 2x} + x = 2 \Leftrightarrow \sqrt {7 - 2x} = 2 - x\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}2 - x \ge 0\\7 - 2x = {\left( {2 - x} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\7 - 2x = {x^2} - 4x + 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\{x^2} - 2x - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\\left[ \begin{array}{l}x = 3\;(L)\\x = - 1\;\end{array} \right.\end{array} \right.\end{array}\)
Vậy \(S = \left\{ { - 1} \right\}\)
b) \(\sqrt { - 2{x^2} + 7x + 1} + 3x = 7 \Leftrightarrow \sqrt { - 2{x^2} + 7x + 1} = 7 - 3x\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}7 - 3x \ge 0\\ - 2{x^2} + 7x + 1 = {\left( {7 - 3x} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{7}{3}\\ - 2{x^2} + 7x + 1 = 9{x^2} - 42x + 49\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{7}{3}\\11{x^2} - 49x + 48 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{7}{3}\\\left[ \begin{array}{l}x = 3\;(L)\\x = \frac{{16}}{{11}}\;\end{array} \right.\quad \end{array} \right. \Leftrightarrow x = \frac{{16}}{{11}}\;\end{array}\)
Vậy \(S = \left\{ {\frac{{16}}{{11}}} \right\}\)
Bài 41 trang 60 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 41 thường yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 41 trang 60 SBT Toán 10 Cánh Diều, chúng tôi xin trình bày lời giải chi tiết như sau:
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Điều này giúp học sinh có cái nhìn tổng quan về bài toán và lựa chọn phương pháp giải phù hợp.
Sau khi phân tích đề bài, học sinh cần áp dụng các kiến thức và công thức đã học để giải quyết bài toán. Trong quá trình giải, học sinh cần chú ý đến việc sử dụng đúng các ký hiệu và đơn vị đo lường.
Sau khi giải xong bài tập, học sinh cần kiểm tra lại kết quả để đảm bảo tính chính xác. Việc kiểm tra lại kết quả giúp học sinh phát hiện và sửa chữa các lỗi sai trong quá trình giải.
Giả sử đề bài yêu cầu chứng minh rằng hai vectơ a và b cùng phương. Để chứng minh điều này, học sinh có thể sử dụng phương pháp sau:
Để giải nhanh các bài tập về vectơ, học sinh có thể sử dụng một số mẹo sau:
Để rèn luyện kỹ năng giải toán về vectơ, học sinh có thể làm thêm các bài tập tương tự trong SBT Toán 10 Cánh Diều hoặc các tài liệu tham khảo khác.
Bài 41 trang 60 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải khoa học mà chúng tôi đã trình bày, các em học sinh sẽ tự tin hơn khi giải bài tập này.
Vectơ | Định nghĩa |
---|---|
Vectơ | Một đoạn thẳng có hướng. |
Vectơ không | Vectơ có điểm gốc và điểm cuối trùng nhau. |