Bài 40 trang 60 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 40 trang 60 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\sqrt { - 4x + 4} = \sqrt { - {x^2} + 1} \)
b) \(\sqrt {3{x^2} - 6x + 1} = \sqrt {{x^2} - 3} \)
c) \(\sqrt {2x - 1} = 3x - 4\)
d) \(\sqrt { - 2{x^2} + x + 7} = x - 3\)
Phương pháp giải - Xem chi tiết
+ \(\sqrt {f\left( x \right)} = \sqrt {g\left( x \right)} \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) \ge 0\\f\left( x \right) = g\left( x \right)\end{array} \right.\)
+ \(\sqrt {f\left( x \right)} = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\end{array} \right.\)
Lời giải chi tiết
a) \(\sqrt { - 4x + 4} = \sqrt { - {x^2} + 1} \)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l} - 4x + 4 \ge 0\\ - 4x + 4 = - {x^2} + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\{x^2} - 4x + 3 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\\left[ \begin{array}{l}x = 1\\x = 3\;(L)\end{array} \right.\end{array} \right.\quad \Leftrightarrow x = 1\end{array}\)
Vậy \(S = \left\{ 1 \right\}\)
b) \(\sqrt {3{x^2} - 6x + 1} = \sqrt {{x^2} - 3} \)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3 \ge 0\\3{x^2} - 6x + 1 = {x^2} - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3 \ge 0\\2{x^2} - 6x + 4 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3 \ge 0\\\left[ \begin{array}{l}x = 1\;(L)\\x = 2\end{array} \right.\end{array} \right.\quad \Leftrightarrow x = 2\end{array}\)
Vậy \(S = \left\{ 2 \right\}\)
c) \(\sqrt {2x - 1} = 3x - 4\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}3x - 4 \ge 0\\2x - 1 = {\left( {3x - 4} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{4}{3}\\2x - 1 = 9{x^2} - 24x + 16\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{4}{3}\\9{x^2} - 26x + 17 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{4}{3}\\\left[ \begin{array}{l}x = 1\;(L)\\x = \frac{{17}}{9}\end{array} \right.\end{array} \right. \Leftrightarrow x = \frac{{17}}{9}\end{array}\)
Vậy \(S = \left\{ {\frac{{17}}{9}} \right\}\)
d) \(\sqrt { - 2{x^2} + x + 7} = x - 3\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}x - 3 \ge 0\\ - 2{x^2} + x + 7 = {\left( {x - 3} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\ - 2{x^2} + x + 7 = {x^2} - 6x + 9\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\3{x^2} - 7x + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\\left[ \begin{array}{l}x = 2\;(L)\\x = \frac{1}{3}\;(L)\end{array} \right.\end{array} \right.\end{array}\)
Vậy \(S = \emptyset \)
Bài 40 trang 60 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Bài 40 thường bao gồm các dạng bài tập sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài 40 trang 60 SBT Toán 10 Cánh Diều, chúng ta sẽ đi qua từng phần của bài tập với lời giải chi tiết:
Độ dài của vectơ a được tính theo công thức: |a| = √(x² + y² + z²)
Trong trường hợp này, |a| = √(2² + (-3)² + 1²) = √(4 + 9 + 1) = √14
Tích vô hướng của a và b được tính theo công thức: a.b = x₁x₂ + y₁y₂ + z₁z₂
Trong trường hợp này, a.b = (1)(-1) + (2)(0) + (3)(2) = -1 + 0 + 6 = 5
Sử dụng công thức: cos(θ) = (a.b) / (|a| * |b|)
Tính a.b = (1)(0) + (1)(1) + (0)(1) = 1
Tính |a| = √(1² + 1² + 0²) = √2
Tính |b| = √(0² + 1² + 1²) = √2
cos(θ) = 1 / (√2 * √2) = 1/2
θ = 60°
Để giải các bài tập về vectơ một cách hiệu quả, học sinh nên:
Ngoài sách giáo khoa và sách bài tập, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 40 trang 60 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài tập tương tự.