Bài 21 trang 81 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10, tập trung vào việc rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế, giúp củng cố và nâng cao hiểu biết về vectơ.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 21 trang 81 SBT Toán 10 Cánh Diều, giúp các em học sinh tự tin hơn trong quá trình học tập và làm bài tập.
Một người đứng ở vị trí A trên nóc một ngôi nhà cao 4 m đang quan sát đang quan sát một cây cao cách ngôi nhà 20 m và đo được \(\widehat {BAC} = {45^0}\) (Hình 27).
Đề bài
Một người đứng ở vị trí Atrên nóc một ngôi nhà cao 4 m đang quan sát đang quan sát một cây cao cách ngôi nhà 20 m và đo được \(\widehat {BAC} = {45^0}\) (Hình 27). Tính chiều cao của cây đó (làm tròn kết quả đến hàng phần mười theo đơn vị mét)
Phương pháp giải - Xem chi tiết
Bước 1: Sử dụng định lí Pytago để tính độ dài AB của ∆ABH vuông tại H
Bước 2: Sử dụng tỉ số lượng giác trong tam giác vuông để tính góc ABH rồi tính góc ABC
Bước 3: Tính góc ACB và sử dụng định lí sin để tính độ dài BC của ∆ABC rồi kết luận
Lời giải chi tiết
Áp dụng định lí Pytago cho ∆ABH vuông tại H ta có: \(AB = \sqrt {A{H^2} + H{B^2}} = \sqrt {{4^2} + {{20}^2}} \approx 20,4\) (m)
Xét ∆ABH vuông tại H có \(\tan \widehat {ABH} = \frac{{AH}}{{BH}} = \frac{1}{5} \Rightarrow \widehat {ABH} \approx 11,{3^0}\)
Ta có: \(\widehat {ABH} + \widehat {ABC} = {90^0} \Rightarrow \widehat {ABC} = {90^0} - \widehat {ABH} = 78,{7^0}\) \( \Rightarrow \widehat {ACB} = {180^0} - (\widehat {ABC} + \widehat {CAB}) = 56,{3^0}\)
Áp dụng định lí sin cho ∆ABC ta có: \(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{20,4.\sin {{45}^0}}}{{\sin 56,{3^0}}} \approx 17,3\) (m)
Vậy chiều cao của cây là 17,3 m
Bài 21 trang 81 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Bài 21 trang 81 SBT Toán 10 Cánh Diều thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)
Ví dụ: Cho hai điểm A(1; 2; 3) và B(4; 5; 6). Tìm tọa độ của vectơ AB.
Giải:
Vectơ AB có tọa độ là: AB = (4 - 1; 5 - 2; 6 - 3) = (3; 3; 3).
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:
Để rèn luyện thêm kỹ năng giải bài tập về vectơ, các em học sinh có thể tham khảo các bài tập tương tự sau:
Bài 21 trang 81 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và các phép toán vectơ. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong quá trình học tập và làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!