Bài 56 trang 63 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 56 trang 63 SBT Toán 10 Cánh Diều, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Hai địa điểm A và B cách hai bởi một con sông (coi hai bờ sông song song).
Đề bài
Hai địa điểm A và B cách hai bởi một con sông (coi hai bờ sông song song). Người ta muốn xây một chiếc cầu bắc vuông góc với bờ sông để có thể đi từ A đến B. Với các số liệu (tính theo đơn vị km) cho trên Hình 28, tìm \(x\) (km) để xác định vị trí đặt chân cầu sao cho khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A.
Phương pháp giải - Xem chi tiết
+ Gọi chân cầu phía A là M, chân cầu phía B là N. Tính AM, BN dựa vào Pytago.
+ Giải phương trình \(BM = 2AM\) có dạng \(\sqrt {f\left( x \right)} = \sqrt {g\left( x \right)} \)
\(\sqrt {f\left( x \right)} = \sqrt {g\left( x \right)} \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) \ge 0\\f\left( x \right) = g\left( x \right)\end{array} \right.\)
Lời giải chi tiết
Gọi chân cầu phía A là M, chân cầu phía B là N.
Dựa vào hình 28, áp dụng định lý Pytago, ta có:
\(AM = \sqrt {{x^2} + {2^2}} = \sqrt {{x^2} + 4} ,BN = \sqrt {{{\left( {6 - x} \right)}^2} + {4^2}} = \sqrt {{x^2} - 12x + 52} \)
Theo đề bài, ta có: \(BM = 2AM \Leftrightarrow \sqrt {{x^2} - 12x + 52} = 2\sqrt {{x^2} + 4} \)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 4 \ge 0\\{x^2} - 12x + 52 = 4\left( {{x^2} + 4} \right)\end{array} \right.\\ \Leftrightarrow {x^2} - 12x + 52 = 4{x^2} + 16\\ \Leftrightarrow 3{x^2} + 12x - 36 = 0\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\\x = - 6\end{array} \right.\end{array}\)
Do \(x > 0\) nên \(x = 2\).
Vậy với \(x = 2\) km thì khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A.
Bài 56 trang 63 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài tập 56 thường bao gồm các dạng bài sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)
Ví dụ: Cho A(1; 2; 3) và B(4; 5; 6). Tìm tọa độ của vectơ AB.
Giải:
Tọa độ của vectơ AB được tính bằng công thức: AB = B - A = (4 - 1; 5 - 2; 6 - 3) = (3; 3; 3).
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:
Ngoài bài 56 trang 63 SBT Toán 10 Cánh Diều, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Việc luyện tập thêm sẽ giúp các em củng cố kiến thức và nâng cao kỹ năng giải toán.
Bài 56 trang 63 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh rèn luyện kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài tập về vectơ.