Chào mừng các em học sinh đến với lời giải chi tiết bài 29 trang 56 Sách Bài Tập Toán 10 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, mang đến những tài liệu học tập chất lượng và hữu ích.
Tập nghiệm của bất phương trình \( - {x^2} + 3x + 18 \ge 0\) là:
Đề bài
Tập nghiệm của bất phương trình \( - {x^2} + 3x + 18 \ge 0\) là:
A. \(\left[ { - 3;6} \right]\)
B. \(\left( { - 3;6} \right)\)
C. \(x \in \left( { - \infty ; - 3} \right) \cup \left( {6; + \infty } \right)\)
D. \(x \in \left( { - \infty ; - 3} \right] \cup \left[ {6; + \infty } \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng định lý về dấu của tam thức bậc hai
Bước 1: Xác định dấu của hệ số \(a\) và tìm nghiệm của \(f\left( x \right)\) (nếu có)
Bước 2: Sử dụng định lý về dấu của tam thức bậc hai để tìm tập hợp các giá trị của của x sao cho \(f\left( x \right)\) mang dấu thỏa mãn bất phương trình
Lời giải chi tiết
Tam thức bậc hai \( - {x^2} + 3x + 18\) có hai nghiệm \({x_1} = - 3;{x_2} = 6\) và có hệ số \(a = - 1 < 0\)
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - {x^2} + 3x + 18 \ge 0\) mang dấu “+” là \(\left[ { - 3;6} \right]\)
Chọn A.
Bài 29 trang 56 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học và đại số cơ bản.
Bài 29 thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 29 trang 56 SBT Toán 10 Cánh Diều, học sinh cần nắm vững các kiến thức và kỹ năng sau:
Bài toán: Cho hai vectơ a = (2; -1) và b = (-3; 4). Tính a + b và 2a.
Giải:
a + b = (2 + (-3); -1 + 4) = (-1; 3)
2a = (2 * 2; 2 * (-1)) = (4; -2)
Ngoài sách bài tập, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 29 trang 56 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ. Bằng cách nắm vững các kiến thức và kỹ năng cần thiết, cùng với việc luyện tập thường xuyên, các em sẽ tự tin giải quyết bài tập một cách hiệu quả.