Logo Header
  1. Môn Toán
  2. Giải bài 31 trang 56 SBT toán 10 - Cánh diều

Giải bài 31 trang 56 SBT toán 10 - Cánh diều

Giải bài 31 trang 56 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Cánh Diều. Bài viết này sẽ hướng dẫn bạn cách giải bài 31 trang 56 SBT Toán 10 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giải các bất phương trình bậc hai sau

Đề bài

Giải các bất phương trình bậc hai sau:

a) \(3{x^2} - 8x + 5 > 0\)

b) \( - 2{x^2} - x + 3 \le 0\)

c) \(25{x^2} - 10x + 1 < 0\)

d) \( - 4{x^2} + 5x + 9 \ge 0\)

Phương pháp giải - Xem chi tiếtGiải bài 31 trang 56 SBT toán 10 - Cánh diều 1

Sử dụng định lý về dấu của tam thức bậc hai

Bước 1: Xác định dấu của hệ số \(a\) và tìm nghiệp của \(f\left( x \right)\) (nếu có)

Bước 2: Sử dụng định lý về đấu của tam thức bậc hai để tìm tập hợp các giá trị của của x sao cho \(f\left( x \right)\) mang dấu thỏa mãn bất phương trình

Lời giải chi tiết

a) \(3{x^2} - 8x + 5 > 0\)

Tam thức bậc hai \(3{x^2} - 8x + 5\) có hai nghiệm \({x_1} = 1;{x_2} = \frac{5}{3}\) và có hệ số \(a = 3 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \(3{x^2} - 8x + 5\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{5}{3}; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \(3{x^2} - 8x + 5 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{5}{3}; + \infty } \right)\)

b) Tam thức bậc hai \( - 2{x^2} - x + 3\) có hai nghiệm \({x_1} = - \frac{3}{2};{x_2} = 1\) và có hệ số \(a = - 2 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 2{x^2} - x + 3\) mang dấu “-” là \(x \in \left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {1; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \( - 2{x^2} - x + 3 \le 0\) là \(x \in \left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {1; + \infty } \right)\)

c) Tam thức bậc hai \(25{x^2} - 10x + 1\) có nghiệm kép \({x_0} = \frac{1}{5}\) và có hệ số \(a = 25 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy \(25{x^2} - 10x + 1 \ge 0\;\forall x \in \mathbb{R}\). Do đó tập hợp những giá trị của \(x\) sao cho tam thức \(25{x^2} - 10x + 1\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(25{x^2} - 10x + 1 < 0\) là \(\emptyset \)

d) \( - 4{x^2} + 5x + 9 \ge 0\)

Tam thức bậc hai \( - 4{x^2} + 5x + 9\) có hai nghiệm \({x_1} = - 1;{x_2} = \frac{9}{4}\) và có hệ số \(a = - 4 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 4{x^2} + 5x + 9\) mang dấu “+” là \(\left[ { - 1;\frac{9}{4}} \right]\)

Vậy tập nghiệm của bất phương trình \( - 4{x^2} + 5x + 9 \ge 0\) là \(\left[ { - 1;\frac{9}{4}} \right]\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 31 trang 56 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 31 trang 56 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 31 trang 56 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và công thức cơ bản là yếu tố then chốt để hoàn thành bài tập này một cách chính xác.

Nội dung bài 31 trang 56 SBT Toán 10 - Cánh Diều

Bài 31 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Thực hiện các phép toán vectơ: Tính tổng, hiệu của hai vectơ, tính tích của một số với vectơ.
  • Dạng 2: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh các đẳng thức cho trước.
  • Dạng 3: Bài toán ứng dụng: Giải các bài toán liên quan đến vectơ trong hình học, ví dụ như tìm tọa độ của một điểm, chứng minh ba điểm thẳng hàng, hoặc chứng minh hai đường thẳng song song, vuông góc.

Hướng dẫn giải chi tiết bài 31 trang 56 SBT Toán 10 - Cánh Diều

Để giải bài 31 trang 56 SBT Toán 10 Cánh Diều một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và kết quả cần tìm.
  2. Vẽ hình (nếu cần thiết): Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  3. Áp dụng kiến thức: Sử dụng các kiến thức về vectơ, các phép toán vectơ, và các tính chất liên quan để giải quyết bài toán.
  4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 31 trang 56 SBT Toán 10 - Cánh Diều

Ví dụ: Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính a + b và 2a.

Giải:

a + b = (1 + (-3); 2 + 4) = (-2; 6)

2a = (2 * 1; 2 * 2) = (2; 4)

Mẹo giải nhanh bài tập vectơ

  • Nắm vững các công thức: Ghi nhớ các công thức về phép cộng, phép trừ vectơ, tích của một số với vectơ.
  • Sử dụng tính chất giao hoán, kết hợp: Áp dụng các tính chất này để đơn giản hóa các biểu thức vectơ.
  • Biến đổi vectơ: Sử dụng các phép biến đổi vectơ để đưa bài toán về dạng quen thuộc.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập vectơ, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để được hướng dẫn chi tiết hơn.

Kết luận

Bài 31 trang 56 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng các kiến thức về vectơ. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn đã có thể tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 10