Logo Header
  1. Môn Toán
  2. Giải bài 57 trang 90 SBT toán 10 - Cánh diều

Giải bài 57 trang 90 SBT toán 10 - Cánh diều

Giải bài 57 trang 90 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 57 trang 90 trong sách bài tập (SBT) Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn hiểu rõ bản chất của bài toán và áp dụng kiến thức vào thực tế.

Trong mặt phẳng toạ độ Oxy, cho các đường thẳng:

Đề bài

Trong mặt phẳng toạ độ Oxy, cho các đường thẳng:

1: x + y + 1 = 0, ∆2: 3x + 4y + 20 = 0, ∆3: 2x - y + 50 = 0

và đường tròn (C): (x + 3)2 + (y −1)2 = 9.

Xác định vị trí tương đối của các đường thẳng đã cho đối với đường tròn (C).

Phương pháp giải - Xem chi tiếtGiải bài 57 trang 90 SBT toán 10 - Cánh diều 1

Bước 1: Xác định tọa độ tâm I và bán kính của đường tròn (C)

Bước 2: Tính khoảng cách từ tâm I đến các đường thẳng và kết luận về vị trí tương đối của các đường thẳng đã cho với (C)

Lời giải chi tiết

(C) có tâm I(-3 ; 1) và bán kính R = 3

+) Xét ∆1: x + y + 1 = 0

Ta có: \(d(I,{\Delta _1}) = \frac{{\left| { - 3 + 1 + 1} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2} < R\) \( \Rightarrow {\Delta _1}\) cắt đường tròn (C) tại 2 điểm

+) Xét ∆2: 3x + 4y + 20 = 0

Ta có: \(d(I,{\Delta _2}) = \frac{{\left| {3.( - 3) + 4.1 + 20} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 3 = R\) \( \Rightarrow {\Delta _2}\) tiếp xúc với đường tròn (C)

+ Xét ∆3: 2x - y + 50 = 0

Ta có: \(d(I,{\Delta _3}) = \frac{{\left| {2.( - 3) - 1 + 50} \right|}}{{\sqrt {{2^2} + {{( - 1)}^2}} }} = \frac{{43\sqrt 5 }}{5} > R\) \( \Rightarrow {\Delta _3}\) và đường tròn (C) không giao nhau

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 57 trang 90 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 57 trang 90 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 57 trang 90 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.

Nội dung bài 57 trang 90 SBT Toán 10 - Cánh Diều

Bài 57 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ, tìm tọa độ của vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số thực).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ để giải các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc,...).

Lời giải chi tiết bài 57 trang 90 SBT Toán 10 - Cánh Diều

Để giải bài 57 trang 90 SBT Toán 10 - Cánh Diều một cách hiệu quả, bạn cần:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và kết quả cần tìm.
  2. Vẽ hình: Vẽ hình minh họa bài toán, giúp bạn hình dung rõ hơn về các yếu tố liên quan.
  3. Sử dụng kiến thức: Áp dụng các định nghĩa, tính chất, quy tắc về vectơ để giải bài toán.
  4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa (giả định):

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2

Lời giải:

Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}. Do đó, overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} +overrightarrow{MC}. Mặt khác, overrightarrow{AC} =overrightarrow{AM} +overrightarrow{MC}, suy ra overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM}. Thay vào phương trình trên, ta được: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AM}. Từ đó, 2overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC}, hay overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).

Các lưu ý khi giải bài tập về vectơ

  • Nắm vững định nghĩa, tính chất của vectơ.
  • Hiểu rõ các quy tắc cộng, trừ, nhân vectơ với một số thực.
  • Sử dụng hệ tọa độ để biểu diễn vectơ và thực hiện các phép toán vectơ một cách dễ dàng.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học Toán online uy tín.
  • Các video bài giảng về vectơ trên YouTube.
  • Các diễn đàn, nhóm học Toán trên mạng xã hội.

Kết luận

Giải bài 57 trang 90 SBT Toán 10 - Cánh Diều đòi hỏi bạn phải nắm vững kiến thức về vectơ và áp dụng linh hoạt các quy tắc, định lý đã học. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài toán này một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 10