Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 57 trang 90 trong sách bài tập (SBT) Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn hiểu rõ bản chất của bài toán và áp dụng kiến thức vào thực tế.
Trong mặt phẳng toạ độ Oxy, cho các đường thẳng:
Đề bài
Trong mặt phẳng toạ độ Oxy, cho các đường thẳng:
∆1: x + y + 1 = 0, ∆2: 3x + 4y + 20 = 0, ∆3: 2x - y + 50 = 0
và đường tròn (C): (x + 3)2 + (y −1)2 = 9.
Xác định vị trí tương đối của các đường thẳng đã cho đối với đường tròn (C).
Phương pháp giải - Xem chi tiết
Bước 1: Xác định tọa độ tâm I và bán kính của đường tròn (C)
Bước 2: Tính khoảng cách từ tâm I đến các đường thẳng và kết luận về vị trí tương đối của các đường thẳng đã cho với (C)
Lời giải chi tiết
(C) có tâm I(-3 ; 1) và bán kính R = 3
+) Xét ∆1: x + y + 1 = 0
Ta có: \(d(I,{\Delta _1}) = \frac{{\left| { - 3 + 1 + 1} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2} < R\) \( \Rightarrow {\Delta _1}\) cắt đường tròn (C) tại 2 điểm
+) Xét ∆2: 3x + 4y + 20 = 0
Ta có: \(d(I,{\Delta _2}) = \frac{{\left| {3.( - 3) + 4.1 + 20} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 3 = R\) \( \Rightarrow {\Delta _2}\) tiếp xúc với đường tròn (C)
+ Xét ∆3: 2x - y + 50 = 0
Ta có: \(d(I,{\Delta _3}) = \frac{{\left| {2.( - 3) - 1 + 50} \right|}}{{\sqrt {{2^2} + {{( - 1)}^2}} }} = \frac{{43\sqrt 5 }}{5} > R\) \( \Rightarrow {\Delta _3}\) và đường tròn (C) không giao nhau
Bài 57 trang 90 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 57 thường bao gồm các dạng bài tập sau:
Để giải bài 57 trang 90 SBT Toán 10 - Cánh Diều một cách hiệu quả, bạn cần:
Ví dụ minh họa (giả định):
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
Lời giải:
Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}. Do đó, overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} +overrightarrow{MC}. Mặt khác, overrightarrow{AC} =overrightarrow{AM} +overrightarrow{MC}, suy ra overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM}. Thay vào phương trình trên, ta được: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AM}. Từ đó, 2overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC}, hay overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Giải bài 57 trang 90 SBT Toán 10 - Cánh Diều đòi hỏi bạn phải nắm vững kiến thức về vectơ và áp dụng linh hoạt các quy tắc, định lý đã học. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài toán này một cách hiệu quả. Chúc bạn học tốt!