Logo Header
  1. Môn Toán
  2. Giải bài 35 trang 16 sách bài tập toán 10 - Cánh diều

Giải bài 35 trang 16 sách bài tập toán 10 - Cánh diều

Giải bài 35 trang 16 Sách bài tập Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 35 trang 16 Sách bài tập Toán 10 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 35 trang 16 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho \({\left( {2x - \frac{1}{3}} \right)^4} = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4}\). Tính:

Đề bài

Cho \({\left( {2x - \frac{1}{3}} \right)^4} = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4}\). Tính: 

a) \({a_2}\)

b) \({a_0} + {a_1} + {a_2} + {a_3} + {a_4}\)

Phương pháp giải - Xem chi tiếtGiải bài 35 trang 16 sách bài tập toán 10 - Cánh diều 1

Bước 1: Áp dụng công thức khai triển: \({(a - b)^4} = {a^4} - 4{a^3}b + 6{a^2}{b^2} - 4a{b^3} + {b^4}\) với \(a = 2x,b = \frac{1}{3}\)

Bước 2: Thay x = 1 vào khai triển trong giả thiết để tính tổng các hệ số của khai triển

Lời giải chi tiết

a) Ta có: 

Giải bài 35 trang 16 sách bài tập toán 10 - Cánh diều 2

Giải bài 35 trang 16 sách bài tập toán 10 - Cánh diều 3

Ta thấy \({a_2}\) là hệ số của \({x^2}\)

Số hạng chứa \({x^2}\) trong khai triển biểu thức \({\left( {2x - \frac{1}{3}} \right)^4}\) là \(\frac{8}{3}{x^2}\)

Suy ra hệ số của trong khai triển biểu thức \({\left( {2x - \frac{1}{3}} \right)^4}\) là \(\frac{8}{3}\)

Vậy \({a_2} = \frac{8}{3}\)

b) Ta có \({\left( {2x - \frac{1}{3}} \right)^4} = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4}\)

Chọn x = 1, ta được:

Giải bài 35 trang 16 sách bài tập toán 10 - Cánh diều 4

Giải bài 35 trang 16 sách bài tập toán 10 - Cánh diều 5

Vậy \({a_0} + {a_1} + {a_2} + {a_3} + {a_4} = \frac{{625}}{{81}}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 35 trang 16 sách bài tập toán 10 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 35 trang 16 Sách bài tập Toán 10 - Cánh Diều: Tổng quan

Bài 35 trang 16 Sách bài tập Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.

Nội dung chi tiết bài 35 trang 16

Bài 35 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vectơ: Yêu cầu học sinh xác định vectơ dựa trên các điểm cho trước, hoặc dựa trên các phép toán vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực.
  • Dạng 3: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của vectơ để chứng minh các đẳng thức cho trước.
  • Dạng 4: Ứng dụng vectơ trong hình học: Giải các bài toán liên quan đến hình học phẳng, sử dụng vectơ để biểu diễn các điểm, đường thẳng, và các mối quan hệ giữa chúng.

Lời giải chi tiết bài 35 trang 16

Để giúp bạn hiểu rõ hơn về cách giải bài 35 trang 16, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong sách bài tập:

Câu 1: (Ví dụ minh họa)

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: AB + AC = 2AM

Lời giải:

  1. Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2
  2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC
  3. Vậy, AB + AC = 2AM (đpcm)

Câu 2: (Ví dụ minh họa)

Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng: OA + OB + OC + OD = 0

Lời giải:

Vì ABCD là hình bình hành, nên O là trung điểm của AC và BD. Do đó:

  • OA = -OC
  • OB = -OD

Suy ra: OA + OB + OC + OD = OA + OB - OA - OB = 0 (đpcm)

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:

  • Nắm vững định nghĩa, tính chất của vectơ.
  • Thành thạo các quy tắc cộng, trừ, nhân vectơ với một số thực.
  • Sử dụng hình vẽ để minh họa và tìm ra mối liên hệ giữa các vectơ.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về vectơ trên YouTube.
  • Các diễn đàn, nhóm học tập về toán học.

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 35 trang 16 Sách bài tập Toán 10 - Cánh Diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10