Logo Header
  1. Môn Toán
  2. Giải bài 73 trang 107 SBT toán 10 - Cánh diều

Giải bài 73 trang 107 SBT toán 10 - Cánh diều

Giải bài 73 trang 107 SBT toán 10 - Cánh diều

Bài 73 trang 107 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán lớp 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 73 trang 107 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho tam giác ABC. Chứng minh rằng \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\) (*)

Đề bài

Cho tam giác ABC. Chứng minh rằng \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\) (*)

Phương pháp giải - Xem chi tiếtGiải bài 73 trang 107 SBT toán 10 - Cánh diều 1

Sử dụng tính chất \({\left| {\overrightarrow a } \right|^2} = {\overrightarrow a ^2}\); các phép toán vectơ và các hằng đẳng thức để biến đổi vế phải của đẳng thức (*)

Lời giải chi tiết

Xét \(A{B^2} + A{C^2} - B{C^2} = \left( {{{\overrightarrow {AB} }^2} + {{\overrightarrow {AC} }^2} - {{\overrightarrow {BC} }^2}} \right) = \left[ {{{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)}^2} - 2\overrightarrow {AB} .\overrightarrow {AC} - {{\overrightarrow {BC} }^2}} \right]\)

\( = \left[ {\left( {\overrightarrow {AB} + \overrightarrow {AC} - \overrightarrow {BC} } \right)\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {BC} } \right) - 2\overrightarrow {AB} .\overrightarrow {AC} } \right]\) \( = \left[ {\left( {\overrightarrow {AB} + \overrightarrow {CB} - \overrightarrow {CA} } \right)\left( {\overrightarrow {AC} + \overrightarrow {AC} } \right) - 2\overrightarrow {AB} .\overrightarrow {AC} } \right]\)

\( = \left( {2\overrightarrow {AB} .2\overrightarrow {AC} - 2\overrightarrow {AB} .\overrightarrow {AC} } \right) = 2\overrightarrow {AB} .\overrightarrow {AC} \)

Vậy \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\) (ĐPCM)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 73 trang 107 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 73 trang 107 SBT Toán 10 - Cánh Diều: Hướng dẫn chi tiết và dễ hiểu

Bài 73 trang 107 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để tính góc giữa hai vectơ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, giải các bài toán về hình học phẳng và không gian.

Nội dung bài tập 73 trang 107 SBT Toán 10 - Cánh Diều

Bài tập 73 thường bao gồm các dạng bài sau:

  1. Tìm tọa độ của một vectơ: Cho các điểm, tìm tọa độ của vectơ tạo bởi chúng.
  2. Thực hiện các phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực.
  3. Tính tích vô hướng của hai vectơ: Sử dụng công thức để tính tích vô hướng và suy ra mối quan hệ giữa hai vectơ.
  4. Chứng minh các đẳng thức vectơ: Sử dụng các phép toán vectơ để chứng minh các đẳng thức cho trước.
  5. Giải các bài toán hình học: Sử dụng vectơ để giải các bài toán về hình học phẳng và không gian, ví dụ như chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc.

Lời giải chi tiết bài 73 trang 107 SBT Toán 10 - Cánh Diều

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)

Ví dụ minh họa (Giả sử bài tập yêu cầu tìm tọa độ của vectơ AB với A(1;2) và B(3;4))

Giải:

Vectơ AB có tọa độ là (xB - xA; yB - yA) = (3 - 1; 4 - 2) = (2; 2).

Vậy, tọa độ của vectơ AB là (2; 2).

Mẹo giải bài tập vectơ hiệu quả

  • Nắm vững định nghĩa và các phép toán vectơ: Đây là nền tảng để giải quyết mọi bài tập về vectơ.
  • Sử dụng công thức một cách chính xác: Đảm bảo rằng bạn hiểu rõ công thức và áp dụng đúng vào từng bài toán.
  • Vẽ hình minh họa: Việc vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán lớp 10, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 10
  • Sách bài tập Toán 10
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 10 trên YouTube

Kết luận

Bài 73 trang 107 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10