Bài 4 trang 42 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10, tập trung vào việc rèn luyện kỹ năng về tập hợp và các phép toán trên tập hợp. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi cung cấp không chỉ đáp án mà còn cả phương pháp giải, giúp các em hiểu rõ bản chất của bài toán và áp dụng vào các tình huống khác nhau.
Cho hàm số \(y = \left\{ \begin{array}{l} - x + 1,x < 0\\0,x = 0\\1,x > 0\end{array} \right.\)
Đề bài
Cho hàm số \(y = \left\{ \begin{array}{l} - x + 1,x < 0\\0,x = 0\\1,x > 0\end{array} \right.\)
a) Tìm tập xác định của hàm số trên
b) Tính giá trị của hàm số khi \(x = - 2,x = 0,x = 2021\)
Phương pháp giải - Xem chi tiết
a) Tập xác định của hàm số \(y = f\left( x \right)\) là tập hợp tất cả các số thực \(x\) sao cho biểu thức \(f\left( x \right)\) có nghĩa
b) Với\(f\left( x \right) = a{x^2} + bx + c \Rightarrow x = {x_0};f\left( {{x_0}} \right) = a{x_0}^2 + b{x_0} + c\)
Lời giải chi tiết
a) \(f(x)\) xác định với \(x > 0,x = 0,x < 0\)
\( \Rightarrow D = ( - \infty ;0) \cup \{ 0\} \cup (0; + \infty ) = \mathbb{R}\)
b) + Tại \(x = - 2 < 0,f\left( { - 2} \right) = - \left( { - 2} \right) + 1 = 3\)
+ Tại \(x = 0,f\left( 0 \right) = 0\)
+ Tại \(x = 2021 > 0,f\left( {2021} \right) = 1\)
Bài 4 trang 42 SBT Toán 10 Cánh Diều yêu cầu học sinh xác định các tập hợp và thực hiện các phép toán hợp, giao, hiệu của các tập hợp. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững định nghĩa và tính chất của các phép toán này.
Để giải bài 4, chúng ta cần xác định rõ các tập hợp A, B, C, D và sau đó áp dụng các phép toán hợp, giao, hiệu theo yêu cầu của đề bài.
Ví dụ: Giả sử A = {1, 2, 3}, B = {2, 4, 5}, C = {1, 3, 6}. Hãy tính:
Các bài tập về tập hợp thường gặp các dạng sau:
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Giải bài 4 trang 42 SBT Toán 10 Cánh Diều đòi hỏi sự hiểu biết vững chắc về lý thuyết tập hợp và các phép toán trên tập hợp. Bằng cách nắm vững kiến thức, áp dụng các phương pháp giải đúng đắn và luyện tập thường xuyên, các em học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn hy vọng rằng hướng dẫn chi tiết này sẽ giúp các em học sinh hiểu rõ hơn về bài tập và tự tin hơn trong quá trình học tập.