Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 17 trang 10, giúp bạn hiểu rõ bản chất của bài toán và áp dụng kiến thức vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, cập nhật nhanh chóng và đáp ứng nhu cầu học tập của học sinh.
90 học sinh được trường tổ chức cho đi xem kịch ở rạp hát thành phố. Các ghế ở rạp được sắp thành các hàng. Mỗi hàng có 30 ghế.
Đề bài
90 học sinh được trường tổ chức cho đi xem kịch ở rạp hát thành phố. Các ghế ở rạp được sắp thành các hàng. Mỗi hàng có 30 ghế.
a) Có bao nhiêu cách sắp xếp 30 học sinh để ngồi vào hàng đầu tiên?
b) Sau khi sắp xếp xong hàng đầu tiên, có bao nhiêu cách sắp xếp 30 học sinh để ngồi vào hàng thứ hai?
c) Sau khi sắp xếp xong hai hàng đầu, có bao nhiêu cách sắp xếp 30 học sinh để ngồi vào hàng thứ ba?
Phương pháp giải - Xem chi tiết
Áp dụng chỉnh hợp để tìm số cách xếp thỏa mãn
Lời giải chi tiết
a) Mỗi cách xếp 30 học sinh để ngồi vào hàng đầu tiên là một chỉnh hợp chập 30 của 90 học sinh.
Vậy số các cách xếp 30 học sinh để ngồi vào hàng đầu tiên là: \(A_{90}^{30}\) cách xếp
b) Sau khi sắp xếp xong hàng đầu tiên thì còn lại 60 học sinh chưa được sắp xếp.
Khi đó, mỗi cách xếp 30 học sinh để ngồi vào hàng thứ hai là một chỉnh hợp chập 30 của 60 học sinh.
Vậy số các cách xếp 30 học sinh để ngồi vào hàng thứ hai sau khi sắp xếp xong hàng đầu tiên là: \(A_{60}^{30}\)cách xếp
c) Sau khi sắp xếp xong hai hàng đầu thì còn lại 30 học sinh chưa được sắp xếp.
Khi đó, mỗi cách xếp 30 học sinh để ngồi vào hàng thứ ba là một hoán vị của 30 phần tử.
Vậy số các cách xếp 30 học sinh để ngồi vào hàng thứ ba sau khi sắp xếp xong hai hàng đầu là: 30! (cách xếp).
Bài 17 trang 10 SBT Toán 10 Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp số. Bài tập này thường yêu cầu học sinh xác định các tập hợp con, tìm giao điểm, hợp, hiệu của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.
Để giải quyết bài 17 trang 10 SBT Toán 10 Cánh Diều một cách hiệu quả, chúng ta cần nắm vững các khái niệm và định nghĩa sau:
Dưới đây là hướng dẫn giải chi tiết từng phần của bài 17 trang 10 SBT Toán 10 Cánh Diều. (Giả sử bài 17 có nhiều câu nhỏ, chúng ta sẽ giải thích từng câu một)
Cho A = {1, 2, 3} và B = {2, 4, 5}. Tìm A ∩ B.
Lời giải: A ∩ B = {2}. Vì 2 là phần tử duy nhất thuộc cả tập hợp A và tập hợp B.
Cho A = {1, 2, 3} và B = {2, 4, 5}. Tìm A ∪ B.
Lời giải: A ∪ B = {1, 2, 3, 4, 5}. Vì A ∪ B chứa tất cả các phần tử thuộc A hoặc B hoặc cả hai.
Cho A = {1, 2, 3} và B = {2, 4, 5}. Tìm A \ B.
Lời giải: A \ B = {1, 3}. Vì A \ B chứa các phần tử thuộc A nhưng không thuộc B.
Ngoài bài 17 trang 10, SBT Toán 10 Cánh Diều còn có nhiều bài tập tương tự về tập hợp. Để giải các bài tập này, bạn cần:
Cho C = {a, b, c, d} và D = {b, d, e, f}. Hãy tìm:
Khi giải bài tập về tập hợp, bạn cần chú ý:
Bài 17 trang 10 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về tập hợp. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn đã có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!