Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 75 SBT toán 10 - Cánh diều

Giải bài 7 trang 75 SBT toán 10 - Cánh diều

Giải bài 7 trang 75 SBT toán 10 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách bài tập Toán 10 Cánh diều. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 75 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Cho tam giác ABC có \(AB = 5,AC = 7,BC = 9\). Tính số đo góc A và bán kính R của đường tròn ngoại tiếp tam giác ABC (làm tròn kết quả đến hàng phần mười)

Đề bài

Cho tam giác ABC có \(AB = 5,AC = 7,BC = 9\). Tính số đo góc A và bán kính R của đường tròn ngoại tiếp tam giác ABC (làm tròn kết quả đến hàng phần mười)

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 75 SBT toán 10 - Cánh diều 1

Bước 1: Sử dụng định lí cosin để tính góc A

Bước 2: Sử dụng định lí sin để tính bán kính R

Lời giải chi tiết

Áp dụng định lí cosin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)

\( \Rightarrow \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{5^2} + {7^2} - {9^2}}}{{2.5.7}} = - \frac{1}{{10}}\) \( \Rightarrow \widehat A \approx {96^0}\)

Áp dụng định lí sin cho ∆ABC ta có: \(\frac{{BC}}{{\sin {\rm{A}}}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin {\rm{A}}}} = \frac{9}{{2.\sin {{96}^0}}} \approx 4,5\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 7 trang 75 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 7 trang 75 SBT Toán 10 - Cánh diều: Tổng quan

Bài 7 trang 75 SBT Toán 10 Cánh diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học và đại số.

Nội dung chi tiết bài 7 trang 75 SBT Toán 10 - Cánh diều

Bài 7 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Thực hiện các phép toán vectơ: Tính tổng, hiệu của hai vectơ, tính tích của một số với vectơ.
  • Dạng 2: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh các đẳng thức vectơ cho trước.
  • Dạng 3: Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng bằng cách sử dụng vectơ để biểu diễn các điểm, đường thẳng, và các mối quan hệ giữa chúng.

Lời giải chi tiết bài 7 trang 75 SBT Toán 10 - Cánh diều

Để giúp bạn hiểu rõ hơn về cách giải bài 7 trang 75 SBT Toán 10 Cánh diều, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài tập. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày một ví dụ minh họa)

Ví dụ minh họa:

Cho hai vectơ ab. Biết a = (2; -1) và b = (-3; 4). Tính a + b và 2a.

Lời giải:

a + b = (2 + (-3); -1 + 4) = (-1; 3)

2a = (2 * 2; 2 * (-1)) = (4; -2)

Các lưu ý khi giải bài tập về vectơ

  • Nắm vững định nghĩa và tính chất của các phép toán vectơ: Phép cộng, phép trừ vectơ, tích của một số với vectơ.
  • Sử dụng các công thức và quy tắc một cách chính xác: Ví dụ, a + b = b + a, k(a + b) = ka + kb.
  • Vẽ hình minh họa: Việc vẽ hình minh họa có thể giúp bạn hiểu rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự và tài liệu tham khảo

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, bạn có thể tham khảo các bài tập tương tự trong sách bài tập Toán 10 Cánh diều và các tài liệu tham khảo khác. Ngoài ra, bạn cũng có thể tìm kiếm các bài giảng trực tuyến và các video hướng dẫn giải bài tập về vectơ trên internet.

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 7 trang 75 SBT Toán 10 Cánh diều một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 10