Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 82 trang 99 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.
Trong mặt phẳng toạ độ Oxy, cho hai điểm F1(−4 ; 0) và F2(4 ; 0).
Đề bài
Trong mặt phẳng toạ độ Oxy, cho hai điểm F1(−4 ; 0) và F2(4 ; 0).
a) Lập phương trình đường tròn có đường kính là F1F2
b) Tập hợp các điểm M trong mặt phẳng toạ độ thoả mãn MF1 + MF2 = 12 là một đường conic (E). Cho biết (E) là đường conic nào và viết phương trình chính tắc của (E)
c) Tập hợp các điểm M trong mặt phẳng toạ độ thoả mãn |MF1 – MF2| = 4 là một đường conic (H). Cho biết (H) là đường conic nào và viết phương trình chính tắc của (H)
Phương pháp giải - Xem chi tiết
Bước 1: Tìm tọa độ tâm và bán kính của đường tròn đường kính là F1F2 rồi viết PT đường tròn
Bước 2: Viết PT chính tắc của elip có 2 tiêu điểm F1(−4 ; 0), F2(4 ; 0) và MF1 + MF2 = 12
Bước 3: Viết PT chính tắc của hypebol có 2 tiêu điểm F1(−4 ; 0), F2(4 ; 0) và |MF1 – MF2| = 4
Lời giải chi tiết
a) Gọi I là trung điểm của F1F2 \( \Rightarrow I(0;0)\)\( \Rightarrow I{F_1} = I{F_2} = 4\)
Đường tròn đường kính F1F2 có tâm I(0 ; 0) và bán kính R = 4 có PT: \({x^2} + {y^2} = 16\)
b) Tập hợp các điểm M trong mặt phẳng toạ độ thoả mãn MF1 + MF2 = 12 là đường elip (E)
Ta có: MF1 + MF2 = 12 = 2a \( \Rightarrow a = 6\)
\({F_1}{F_2} = 8 = 2c \Rightarrow c = 4\)
Khi đó \({b^2} = {a^2} - {c^2} = 36 - 16 = 20\)
Vậy elip (E) có PT: \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1\)
b) Tập hợp các điểm M trong mặt phẳng toạ độ thoả mãn |MF1 – MF2| = 4 là đường hypebol (H)
Ta có: |MF1 – MF2| = 4 = 2a \( \Rightarrow a = 2\)
\({F_1}{F_2} = 8 = 2c \Rightarrow c = 4\)
Khi đó \({b^2} = {c^2} - {a^2} = 16 - 4 = 12\)
Vậy hypebol (H) có PT: \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1\)
Bài 82 trang 99 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 82 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 82, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày cách tiếp cận chung và ví dụ minh họa)
Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Lời giải:
Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự sau:
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả, bạn đã có thể tự tin giải bài 82 trang 99 SBT Toán 10 - Cánh Diều. Hãy tiếp tục luyện tập và khám phá thêm nhiều kiến thức thú vị trong môn Toán nhé!
Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục tri thức.