Logo Header
  1. Môn Toán
  2. Giải bài 82 trang 99 SBT toán 10 - Cánh diều

Giải bài 82 trang 99 SBT toán 10 - Cánh diều

Giải bài 82 trang 99 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 82 trang 99 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Trong mặt phẳng toạ độ Oxy, cho hai điểm F1(−4 ; 0) và F2(4 ; 0).

Đề bài

Trong mặt phẳng toạ độ Oxy, cho hai điểm F1(−4 ; 0) và F2(4 ; 0).

a) Lập phương trình đường tròn có đường kính là F1F2

b) Tập hợp các điểm M trong mặt phẳng toạ độ thoả mãn MF1 + MF2 = 12 là một đường conic (E). Cho biết (E) là đường conic nào và viết phương trình chính tắc của (E)

c) Tập hợp các điểm M trong mặt phẳng toạ độ thoả mãn |MF1MF2| = 4 là một đường conic (H). Cho biết (H) là đường conic nào và viết phương trình chính tắc của (H)

Phương pháp giải - Xem chi tiếtGiải bài 82 trang 99 SBT toán 10 - Cánh diều 1

Bước 1: Tìm tọa độ tâm và bán kính của đường tròn đường kính là F1F2  rồi viết PT đường tròn

Bước 2: Viết PT chính tắc của elip có 2 tiêu điểm F1(−4 ; 0), F2(4 ; 0) và MF1 + MF2 = 12

Bước 3: Viết PT chính tắc của hypebol có 2 tiêu điểm F1(−4 ; 0), F2(4 ; 0) và |MF1MF2| = 4

Lời giải chi tiết

a) Gọi I là trung điểm của F1F2 \( \Rightarrow I(0;0)\)\( \Rightarrow I{F_1} = I{F_2} = 4\)

Đường tròn đường kính F1F2 có tâm I(0 ; 0) và bán kính R = 4 có PT: \({x^2} + {y^2} = 16\)

b) Tập hợp các điểm M trong mặt phẳng toạ độ thoả mãn MF1 + MF2 = 12 là đường elip (E)

Ta có: MF1 + MF2 = 12 = 2a \( \Rightarrow a = 6\)

\({F_1}{F_2} = 8 = 2c \Rightarrow c = 4\)

Khi đó \({b^2} = {a^2} - {c^2} = 36 - 16 = 20\)

Vậy elip (E) có PT: \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1\)

b) Tập hợp các điểm M trong mặt phẳng toạ độ thoả mãn |MF1MF2| = 4 là đường hypebol (H)

Ta có: |MF1MF2| = 4 = 2a \( \Rightarrow a = 2\)

\({F_1}{F_2} = 8 = 2c \Rightarrow c = 4\)

Khi đó \({b^2} = {c^2} - {a^2} = 16 - 4 = 12\)

Vậy hypebol (H) có PT: \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 82 trang 99 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 82 trang 99 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 82 trang 99 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài 82 trang 99 SBT Toán 10 - Cánh Diều

Bài 82 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ trong hình.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ vào giải quyết các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, hai tam giác bằng nhau,...).

Lời giải chi tiết bài 82 trang 99 SBT Toán 10 - Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài 82, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày cách tiếp cận chung và ví dụ minh họa)

Ví dụ minh họa:

Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Lời giải:

  1. Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2.
  2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC.
  3. Vậy, AB + AC = 2AM (đpcm).

Mẹo giải bài tập vectơ hiệu quả

  • Nắm vững định nghĩa và tính chất của vectơ: Đây là nền tảng để giải quyết mọi bài toán liên quan đến vectơ.
  • Sử dụng quy tắc cộng, trừ vectơ một cách linh hoạt: Quy tắc này giúp bạn đơn giản hóa các biểu thức vectơ và tìm ra mối liên hệ giữa các vectơ.
  • Vẽ hình minh họa: Việc vẽ hình giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài và rèn luyện kỹ năng giải toán.

Các bài tập tương tự

Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự sau:

  • Bài 83 trang 99 SBT Toán 10 - Cánh Diều
  • Bài 84 trang 100 SBT Toán 10 - Cánh Diều
  • Các bài tập về vectơ trong sách giáo khoa Toán 10

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả, bạn đã có thể tự tin giải bài 82 trang 99 SBT Toán 10 - Cánh Diều. Hãy tiếp tục luyện tập và khám phá thêm nhiều kiến thức thú vị trong môn Toán nhé!

Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục tri thức.

Tài liệu, đề thi và đáp án Toán 10