Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 9 trang 6 sách bài tập Toán 10 - Cánh diều. Bài viết này sẽ giúp bạn nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn chinh phục môn Toán một cách hiệu quả.
Có 10 cặp vợ chồng dự tiệc. Tính số cách chọn ra một nam và một nữ trong bữa tiệc để phát biểu ý kiến, sao cho:
Đề bài
Có 10 cặp vợ chồng dự tiệc. Tính số cách chọn ra một nam và một nữ trong bữa tiệc để phát biểu ý kiến, sao cho:
a) Hai người đó là một cặp vợ chồng
b) Hai người đó không là vợ chồng.
Phương pháp giải - Xem chi tiết
Tính số cách chọn theo các bước chọn nam và nữ (có 10 nam và 10 nữ)
Bước 1: Tính số cách chọn 1 nam rồi chọn 1 nữ là vợ của người nam đã chọn
Bước 2: Tính số cách chọn 1 nam rồi chọn 1 nữ không là vợ của người nam đã chọn
Bước 3: Áp dụng quy tắc nhân để tính tổng số cách chọn
Lời giải chi tiết
Vì có 10 cặp vợ chồng dự tiệc nên ta có 10 nam và 10 nữ.
a) Việc chọn một cặp vợ chồng để phát biểu ý kiến là thực hiện hai hành động liên tiếp: đầu tiên chọn 1 nam, sau đó chọn 1 nữ là vợ của người nam đã chọn.
Chọn 1 nam có 10 cách chọn.
Chọn 1 nữ là vợ của người nam đã chọn chỉ có 1 cách chọn.
Vậy có tất cả 10.1 = 10 cách chọn hai người trong bữa tiệc để phát biểu ý kiến sao cho hai người đó là một cặp vợ chồng.
b) Việc chọn một cặp vợ chồng để phát biểu ý kiến là thực hiện hai hành động liên tiếp: đầu tiên chọn 1 nam, sau đó chọn 1 nữ không phải là vợ của người nam đã chọn.
Chọn 1 nam có 10 cách chọn.
Chọn 1 nữ không phải là vợ của người nam đã chọn thì có 9 cách chọn.
Vậy có tất cả 10.9 = 90 cách chọn hai người trong bữa tiệc để phát biểu ý kiến sao cho hai người đó không phải là vợ chồng.
Bài 9 trang 6 sách bài tập Toán 10 - Cánh diều thuộc chương trình học về tập hợp và các phép toán trên tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các khái niệm như tập hợp, phần tử của tập hợp, tập con, tập rỗng, và các phép toán hợp, giao, hiệu, bù để giải quyết các bài toán cụ thể.
Bài 9 bao gồm một số câu hỏi và bài tập khác nhau, tập trung vào việc:
Để xác định một tập hợp A có phải là tập hợp con của tập hợp B hay không, ta cần kiểm tra xem mọi phần tử của A đều thuộc B hay không. Nếu điều này đúng, thì A là tập hợp con của B, ký hiệu là A ⊆ B.
Ví dụ: Cho A = {1, 2} và B = {1, 2, 3}. Vì mọi phần tử của A đều thuộc B, nên A ⊆ B.
Phép hợp của hai tập hợp A và B, ký hiệu là A ∪ B, là tập hợp chứa tất cả các phần tử thuộc A hoặc thuộc B (hoặc cả hai). Các phần tử được liệt kê một lần duy nhất.
Ví dụ: Cho A = {1, 2, 3} và B = {3, 4, 5}. A ∪ B = {1, 2, 3, 4, 5}.
Phép giao của hai tập hợp A và B, ký hiệu là A ∩ B, là tập hợp chứa tất cả các phần tử thuộc cả A và B.
Ví dụ: Cho A = {1, 2, 3} và B = {2, 3, 4}. A ∩ B = {2, 3}.
Phép hiệu của hai tập hợp A và B, ký hiệu là A \ B, là tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.
Ví dụ: Cho A = {1, 2, 3} và B = {2, 4}. A \ B = {1, 3}.
Phép bù của tập hợp A trong tập hợp vũ trụ U, ký hiệu là A', là tập hợp chứa tất cả các phần tử thuộc U nhưng không thuộc A.
Ví dụ: Cho U = {1, 2, 3, 4, 5} và A = {1, 3, 5}. A' = {2, 4}.
Sơ đồ Venn là một công cụ trực quan hữu ích để biểu diễn các tập hợp và các phép toán trên tập hợp. Sơ đồ Venn giúp chúng ta dễ dàng hình dung mối quan hệ giữa các tập hợp và giải quyết các bài toán liên quan.
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 9 trang 6 sách bài tập Toán 10 - Cánh diều là một bài tập quan trọng giúp học sinh nắm vững kiến thức cơ bản về tập hợp và các phép toán trên tập hợp. Việc hiểu rõ các khái niệm và phương pháp giải bài tập này sẽ là nền tảng vững chắc cho việc học tập các kiến thức toán học nâng cao hơn.
Phép toán | Ký hiệu | Mô tả |
---|---|---|
Hợp | ∪ | Tập hợp chứa tất cả các phần tử thuộc A hoặc B (hoặc cả hai). |
Giao | ∩ | Tập hợp chứa tất cả các phần tử thuộc cả A và B. |
Hiệu | \ | Tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B. |
Bù | ' | Tập hợp chứa tất cả các phần tử thuộc U nhưng không thuộc A. |