Logo Header
  1. Môn Toán
  2. Giải bài 27 trang 32 SBT toán 10 - Cánh diều

Giải bài 27 trang 32 SBT toán 10 - Cánh diều

Giải bài 27 trang 32 SBT Toán 10 - Cánh Diều

Bài 27 trang 32 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 27 trang 32 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

a) Biểu diễn miền nghiệm của các bất phương trình sau: \(\left\{ {\begin{array}{*{20}{c}}{3x - y \le 9}\\{3x + 6y \le 30}\\{x \ge 0}\\{0 \le y \le 4}\end{array}} \right.\left( I \right)\)

Đề bài

a) Biểu diễn miền nghiệm của các bất phương trình sau: \(\left\{ {\begin{array}{*{20}{c}}{3x - y \le 9}\\{3x + 6y \le 30}\\{x \ge 0}\\{0 \le y \le 4}\end{array}} \right.\left( I \right)\)

b) Tìm x, y là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x + 4y\) đạt giá trị lớn nhất

Phương pháp giải - Xem chi tiếtGiải bài 27 trang 32 SBT toán 10 - Cánh diều 1

a) Xác định miền nghiệm của từng bpt. Miền nghiệm của hệ bpt là miền giao của các miền nghiệm ấy.

Biểu diễn miền nghiệm của bpt \(ax + by < c\)

Bước 1: Vẽ đường thẳng \(d:ax + by = c\)

Bước 2: Lấy một điểm \(M\left( {{x_o};{y_o}} \right)\) không thuộc d (ta thường lấy gốc tọa độ O nếu \(c \ne 0\)). Tính \(a{x_o} + b{y_o}\) và so sánh với c

Bước 3: Kết luận

Nếu \(a{x_o} + b{y_o} < c\)thì nửa mặt phẳng (không kể đường thẳng d) chứa điểm M là miền nghiệm của bất phương trình \(ax + by < c\)

Nếu \(a{x_o} + b{y_o} > c\) thì nửa mặt phẳng (không kể d) không chứa điểm M là miền nghiệm của bất phương trình \(ax + by > c\)

b) Tính giá trị của \(F\left( {x;y} \right)\) tại các đỉnh của miền đa giác nghiệm.

Lời giải chi tiết

Vẽ các đường thẳng:

d1: 3x – y = 9 đi qua hai điểm có tọa độ là (3; 0) và (0; 9).

d2: 3x + 6y = 30 đi qua hai điểm (10; 0) và (0; 5).

d3: x = 0 là trục tung.

d4: y = 0 là trục hoành

d5: y = 4 đi qua điểm (0; 4) và song song với trục hoành.

Gạch đi các phần không thuộc miền nghiệm của mỗi bất phương trình.

Miền nghiệm của hệ bất phương trình là miền ngũ giác OABCD với O(0; 0), A(0; 4), B(2; 4), C(4; 3), D(3; 0):

Giải bài 27 trang 32 SBT toán 10 - Cánh diều 2

b) Thay x,y lần lượt là tọa độ các điểm O, A, B, C, D vào biểu thức F:

\(O(0;0)\)

\(A(0;4)\)

\(B(2;4)\)

\(C(4;3)\)

\(D(3;0)\)

\(F = 3x + 4y\)

\(0\)

\(16\)

\(22\)

\(24\)

\(9\)

F đạt giá trị lớn nhất bằng 24 tại \(x = 4,y = 3\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 27 trang 32 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 27 trang 32 SBT Toán 10 - Cánh Diều: Tổng quan và Phương pháp

Bài 27 trang 32 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để xác định góc giữa hai vectơ, kiểm tra tính vuông góc.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ và thực hiện các phép toán vectơ bằng tọa độ.

Nội dung bài tập 27 trang 32 SBT Toán 10 - Cánh Diều

Bài tập 27 thường bao gồm các dạng bài sau:

  1. Tìm tọa độ của vectơ: Cho các điểm, tìm tọa độ của vectơ tạo bởi chúng.
  2. Thực hiện các phép toán vectơ: Tính tổng, hiệu, tích với một số thực của các vectơ.
  3. Tính tích vô hướng: Tính tích vô hướng của hai vectơ và suy ra mối quan hệ giữa chúng (góc, tính vuông góc).
  4. Ứng dụng vectơ trong hình học: Chứng minh các đẳng thức vectơ, chứng minh các tính chất hình học.

Lời giải chi tiết bài 27 trang 32 SBT Toán 10 - Cánh Diều

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày một ví dụ minh họa về cách giải một dạng bài tập tương tự.)

Ví dụ minh họa:

Đề bài: Cho A(1; 2), B(3; 4), C(5; 2). Tìm tọa độ của vectơ AB và tính tích vô hướng của AB và AC.

Giải:

  1. Tìm tọa độ của vectơ AB:
  2. AB = B - A = (3 - 1; 4 - 2) = (2; 2)

  3. Tính tích vô hướng của AB và AC:
  4. AC = C - A = (5 - 1; 2 - 2) = (4; 0)

    AB.AC = (2 * 4) + (2 * 0) = 8 + 0 = 8

Kết luận: Tọa độ của vectơ AB là (2; 2) và tích vô hướng của AB và AC là 8.

Mẹo giải bài tập vectơ hiệu quả

  • Nắm vững định nghĩa và tính chất của vectơ.
  • Thành thạo các phép toán vectơ.
  • Sử dụng công thức tích vô hướng một cách linh hoạt.
  • Vẽ hình để hình dung bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 10, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 10 - Cánh Diều
  • Sách bài tập Toán 10 - Cánh Diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 10 trên YouTube

Kết luận

Bài 27 trang 32 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 10