Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 28 trang 15 trong sách bài tập Toán 10 - Cánh Diều, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn hiểu rõ bản chất của từng bài toán, không chỉ đơn thuần là đáp án.
Trong các phát biểu sau, phát biểu nào sai?
Đề bài
Trong các phát biểu sau, phát biểu nào sai?
A.\({(a + b)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\)
B. \({(a - b)^4} = {a^4} - 4{a^3}b + 6{a^2}{b^2} - 4a{b^3} + {b^4}\)
C. \({(a + b)^4} = {b^4} + 4{b^3}a + 6{a^2}{b^2} - 4b{a^3} + {a^4}\)
D. \({(a + b)^4} = {a^4} + {b^4}\)
Phương pháp giải - Xem chi tiết
Áp dụng nhị thức Newton để khai triển \({(a + b)^4}\)và \({(a - b)^4} = {\left[ {a + ( - b)} \right]^4}\) để tìm câu đúng
Lời giải chi tiết
Công thức khai triển nhị thức Newton \({(a + b)^4}\) là:
\({(a + b)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}={b^4} + 4{b^3}a + 6{a^2}{b^2} + 4b{a^3} + {a^4}\)
® A, C đúng, D sai.
® Chọn D
Bài 28 trang 15 Sách bài tập Toán 10 - Cánh Diều thuộc chương trình học về Vectơ trong mặt phẳng. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học phẳng.
Bài 28 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 28 trang 15 một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản sau:
Ví dụ: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Giải:
Vì M là trung điểm của BC, ta có BM = MC. Do đó, BC = 2BM.
Áp dụng quy tắc cộng vectơ, ta có:
AB + AC = AB + (BC - BA) = AB + BC + AB = 2AB + BC
Mặt khác, AM = AB + BM = AB + (1/2)BC
Suy ra 2AM = 2AB + BC
Vậy AB + AC = 2AM (đpcm)
Để học tốt môn Toán 10, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 28 trang 15 Sách bài tập Toán 10 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!