Logo Header
  1. Môn Toán
  2. Giải bài 45 trang 50 sách bài tập toán 10 - Cánh diều

Giải bài 45 trang 50 sách bài tập toán 10 - Cánh diều

Giải bài 45 trang 50 Sách bài tập Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 45 trang 50 sách bài tập Toán 10 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Trong một trò chơi, bạn Hằng ghi tên 63 tỉnh, thành phố trực thuộc Trung ương của VN (tính đến năm 2021) vào 63 phiếu, hai phiếu khác nhau ghi tên hai nơi khác nhau, rồi bỏ tất cả các phiếu đó vào một hộp kín. Bạn Hoài rút ngẫu nhiên 2 phiếu. Tính xác suất của mỗi biến cố sau:

Đề bài

Trong một trò chơi, bạn Hằng ghi tên 63 tỉnh, thành phố trực thuộc Trung ương của VN (tính đến năm 2021) vào 63 phiếu, hai phiếu khác nhau ghi tên hai nơi khác nhau, rồi bỏ tất cả các phiếu đó vào một hộp kín. Bạn Hoài rút ngẫu nhiên 2 phiếu. Tính xác suất của mỗi biến cố sau:

a) A: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng âm tiết Hà”

b) B: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ K”

c) C: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ B”

Phương pháp giải - Xem chi tiếtGiải bài 45 trang 50 sách bài tập toán 10 - Cánh diều 1

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

Chọn 2 tỉnh thành trong số 63 tình thành \( \Rightarrow n\left( \Omega \right) = C_{63}^2\)

a) A: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng âm tiết Hà”: có 4 tỉnh: HN, Hà Giang, Hà Tĩnh, Hà Nam \( \Rightarrow n\left( A \right) = C_4^2 = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{C_{63}^2}} = \frac{2}{{651}}\)

b) B: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ K”: có 3 tỉnh: Khánh Hòa, Kiên Giang, Kon Tum \( \Rightarrow n\left( B \right) = C_3^2 = 3\)

\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{3}{{C_{63}^2}} = \frac{1}{{651}}\)

c) C: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ B”: có 10 tỉnh: Bà Rịa – Vũng Tàu, Bắc Giang, Bắc Kạn, Bắc Ninh, Bạc Liêu, Bến Tre, Bình Phước, Bình Dương, Bình Định, Bình Thuận \( \Rightarrow n\left( C \right) = C_{10}^2 = 45\)

\( \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{45}}{{C_{63}^2}} = \frac{5}{{217}}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 45 trang 50 sách bài tập toán 10 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 45 trang 50 Sách bài tập Toán 10 - Cánh Diều: Hướng dẫn chi tiết

Bài 45 trang 50 sách bài tập Toán 10 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường tập trung vào việc vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan để giải quyết các bài toán hình học và đại số.

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:

  • Vectơ: Một đoạn thẳng có hướng. Vectơ được xác định bởi điểm gốc và điểm cuối.
  • Phép cộng vectơ: Quy tắc hình bình hành hoặc quy tắc tam giác.
  • Phép trừ vectơ:AB - AC = CB
  • Tích của một số với vectơ:k.AB là một vectơ cùng hướng với AB nếu k > 0 và ngược hướng nếu k < 0. Độ dài của k.AB là |k| lần độ dài của AB.

Phần 2: Giải chi tiết bài 45 trang 50 Sách bài tập Toán 10 - Cánh Diều

Để giải bài 45 trang 50, chúng ta cần phân tích kỹ đề bài, xác định các vectơ liên quan, và áp dụng các công thức, quy tắc đã học. Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi trong bài tập:

Câu a: (Ví dụ minh họa)

Giả sử đề bài yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Chúng ta có thể sử dụng tính chất của hình bình hành: AB = DCAD = BC. Để chứng minh điều này, chúng ta có thể sử dụng phép cộng và trừ vectơ để biểu diễn các cạnh của tứ giác ABCD qua các vectơ khác.

Câu b: (Ví dụ minh họa)

Giả sử đề bài yêu cầu tìm tọa độ của một điểm M thỏa mãn điều kiện MA + MB = 0. Điều kiện này có nghĩa là M là trung điểm của đoạn thẳng AB. Chúng ta có thể sử dụng công thức trung điểm để tính tọa độ của M.

Phần 3: Bài tập tương tự và luyện tập

Để củng cố kiến thức và kỹ năng giải toán, bạn có thể làm thêm các bài tập tương tự trong sách bài tập hoặc trên các trang web học toán online. Dưới đây là một số bài tập gợi ý:

  • Bài 46 trang 50 Sách bài tập Toán 10 - Cánh Diều
  • Bài 47 trang 50 Sách bài tập Toán 10 - Cánh Diều

Phần 4: Lưu ý khi giải bài tập về vectơ

Khi giải bài tập về vectơ, bạn cần lưu ý những điều sau:

  • Vẽ hình minh họa để dễ hình dung bài toán.
  • Sử dụng đúng các quy tắc và công thức về vectơ.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Phần 5: Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm toán học trừu tượng mà còn có nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Trong vật lý: Vectơ được sử dụng để biểu diễn các đại lượng vật lý như vận tốc, gia tốc, lực.
  • Trong kỹ thuật: Vectơ được sử dụng để mô tả các chuyển động của máy móc, robot.
  • Trong đồ họa máy tính: Vectơ được sử dụng để tạo ra các hình ảnh, mô hình 3D.

Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 45 trang 50 sách bài tập Toán 10 Cánh Diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10