Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Giải bài 54 trang 89 SBT Toán 10 - Cánh Diều. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, đáp ứng nhu cầu học tập của học sinh.
Viết phương trình đường tròn (C) trong mỗi trường hợp sau:
Đề bài
Viết phương trình đường tròn (C) trong mỗi trường hợp sau:
a) (C) có tâm I(−6 ; 2) bán kính 7
b) (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
c) (C) có tâm I(1 ; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0
d) (C) có đường kính AB với A(−2 ; 3) và B(0 ; 1)
e) (C) có tâm I thuộc đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\end{array} \right.\) và (C) tiếp xúc với hai đường thẳng ∆2: 3x + 4y – 1 = 0, ∆3: 3x - 4y + 2 = 0
Phương pháp giải - Xem chi tiết
+) Từ câu a câu d xác định bán kính của (C) rồi viết PT đường tròn dạng chính tắc
+) Xét câu e
Bước 1: Tham số hóa tọa độ tâm I
Bước 2: Lập PT từ giả thiết: \(d(I,{\Delta _2}) = d(I,{\Delta _3})\)
Bước 3: Giải PT tìm được ở bước 2 để tìm tọa độ tâm I và bán kính đường tròn rồi viết PT đường tròn dạng chính tắc
Lời giải chi tiết
a) (C) có tâm I(−6 ; 2) bán kính 7 nên có PT: \({(x + 6)^2} + {(y - 2)^2} = 49\)
b) (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1) \( \Rightarrow \) Bán kính của (C) là \(IA = \sqrt {{{(4 - 3)}^2} + {{(1 + 7)}^2}} = \sqrt {65} \)
\( \Rightarrow \)(C) có PT: \({(x - 3)^2} + {(y + 7)^2} = 65\)
c) (C) có tâm I(1 ; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0
\( \Rightarrow \) Bán kính của (C) là khoảng cách từ tâm I đến đường thẳng ∆: 3x + 4y + 19 = 0
Ta có: \(d(I,\Delta ) = \frac{{\left| {3.1 + 4.2 + 19} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{30}}{5} = 6\)
\( \Rightarrow \)(C) có PT: \({(x - 1)^2} + {(y - 2)^2} = 36\)
d) (C) có đường kính AB với A(−2 ; 3) và B(0 ; 1)
\( \Rightarrow \) (C) có tâm I là trung điểm của AB \( \Rightarrow I( - 1;2)\)
(C) có bán kính IA = IB = \(\sqrt 2 \)
\( \Rightarrow \)(C) có PT: \({(x + 1)^2} + {(y - 2)^2} = 2\)
e) (C) có tâm I thuộc đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\end{array} \right.\) và (C) tiếp xúc với hai đường thẳng ∆2: 3x + 4y – 1 = 0, ∆3: 3x - 4y + 2 = 0
Do \(I \in {\Delta _1}\) nên \(I(1 + t;1 - t)\)
Theo giả thiết, \(R = d(I,{\Delta _2}) = d(I,{\Delta _3}) \Leftrightarrow \frac{{\left| {3(1 + t) + 4(1 - t) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{\left| {3(1 + t) - 4(1 - t) + 2} \right|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }}\)
\( \Leftrightarrow \left| {6 - t} \right| = \left| {7t + 1} \right| \Leftrightarrow \left[ \begin{array}{l}6 - t = 7t + 1\\6 - t = - 7t - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = \frac{5}{8}\\t = \frac{{ - 7}}{6}\end{array} \right.\)
Với \(t = \frac{5}{8} \Rightarrow I\left( {\frac{{13}}{8};\frac{3}{8}} \right)\) \( \Rightarrow \)\(R = \frac{{43}}{{40}}\). Khi đó (C) có PT: \({\left( {x - \frac{{13}}{8}} \right)^2} + {\left( {y - \frac{3}{8}} \right)^2} = \frac{{1849}}{{1600}}\)
Với \(t = - \frac{7}{6} \Rightarrow I\left( { - \frac{1}{6};\frac{{13}}{6}} \right)\)\( \Rightarrow \)\(R = \frac{{43}}{{30}}\). Khi đó (C) có PT: \({\left( {x + \frac{1}{6}} \right)^2} + {\left( {y - \frac{{13}}{6}} \right)^2} = \frac{{1849}}{{900}}\)
Bài 54 trang 89 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.
Bài 54 thường yêu cầu học sinh thực hiện các thao tác như:
Để cung cấp lời giải chi tiết, chúng ta cần xem xét cụ thể nội dung của bài toán. Tuy nhiên, dưới đây là một ví dụ minh họa về cách tiếp cận và giải quyết một bài toán vectơ tương tự:
Cho tam giác ABC với A(1;2), B(3;4), C(-1;0). Tìm tọa độ của điểm D sao cho ABCD là hình bình hành.
Ngoài ví dụ trên, bài 54 trang 89 SBT Toán 10 - Cánh Diều có thể xuất hiện các dạng bài tập khác như:
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Để học tập và ôn luyện kiến thức về vectơ, bạn có thể tham khảo các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải quyết bài 54 trang 89 SBT Toán 10 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!