Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 84 trang 99 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(1 ; 0) và B(0 ; 3). Tìm tập hợp các điểm M thỏa mãn MA = 2MB.
Đề bài
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(1 ; 0) và B(0 ; 3). Tìm tập hợp các điểm M thỏa mãn
MA = 2MB.
Phương pháp giải - Xem chi tiết
Bước 1: Tham số hóa tọa độ điểm M rồi tính độ dài MA, MB
Bước 2: Biến đổi giả thiết MA = 2MB rồi kết luận về tập hợp các điểm M thỏa mãn
Lời giải chi tiết
Gọi M(x ; y)
Ta có: \(\overrightarrow {AM} = (a - 1;b) \Rightarrow AM = \sqrt {{{(x - 1)}^2} + {y^2}} \Rightarrow A{M^2} = {(x - 1)^2} + {y^2}\)
\(\overrightarrow {BM} = (a;b - 3) \Rightarrow BM = \sqrt {{x^2} + {{(y - 3)}^2}} \Rightarrow B{M^2} = {x^2} + {(y - 3)^2}\)
Theo giả thiết, \(MA = 2MB \Rightarrow M{A^2} = 4M{B^2}\) \( \Leftrightarrow {(x - 1)^2} + {y^2} = 4\left[ {{x^2} + {{(y - 3)}^2}} \right]\)
\( \Leftrightarrow 3{x^2} + 3{y^2} + 2x - 24y + 35 = 0\)\( \Leftrightarrow {x^2} + {y^2} + \frac{2}{3}x - 8y + \frac{{35}}{3} = 0\)
\( \Leftrightarrow {\left( {x + \frac{1}{3}} \right)^2} + {\left( {y - 4} \right)^2} = \frac{{40}}{9}\)
Vậy tập hợp các điểm M thỏa mãn MA = 2MB là đường tròn có PT: \({\left( {x + \frac{1}{3}} \right)^2} + {\left( {y - 4} \right)^2} = \frac{{40}}{9}\) với tâm là \(I\left( { - \frac{1}{3};4} \right)\) và bán kính \(R = \frac{{2\sqrt {10} }}{3}\).
Bài 84 trang 99 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 84 thường bao gồm các dạng bài tập sau:
Để giải bài 84 trang 99 SBT Toán 10 - Cánh Diều một cách hiệu quả, bạn cần:
Ví dụ minh họa:
Giả sử bài toán yêu cầu chứng minh ba điểm A, B, C thẳng hàng. Bạn có thể sử dụng vectơ để giải quyết bài toán này bằng cách chứng minh rằng vectơ AB và vectơ AC cùng phương. Cụ thể, bạn cần tính tọa độ của các vectơ AB và AC, sau đó kiểm tra xem hai vectơ này có cùng phương hay không. Nếu hai vectơ cùng phương, thì ba điểm A, B, C thẳng hàng.
Để học tốt môn Toán 10, bạn có thể tham khảo các tài liệu sau:
Bài 84 trang 99 SBT Toán 10 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ và rèn luyện kỹ năng giải quyết các bài toán hình học. Hy vọng với những hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả trên đây, bạn sẽ tự tin hơn trong việc chinh phục bài toán này.
Chúc bạn học tập tốt!