Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 10 Cánh Diều. Bài viết này sẽ hướng dẫn bạn cách giải bài 22 trang 52 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả, giúp bạn tự tin hơn trong việc chinh phục môn Toán.
Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\).
Đề bài
Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\). Trong các phát biểu sau, phát biểu nào là đúng?
A. \(f\left( x \right) < 0\) với mọi \(x\) khi và chỉ khi \(a < 0\) và \(\Delta \le 0\)
B. \(f\left( x \right) < 0\) với mọi \(x\) khi và chỉ khi \(a < 0\) và \(\Delta < 0\)
C. \(f\left( x \right) \le 0\) với mọi \(x\) khi và chỉ khi \(a > 0\) và \(\Delta < 0\)
D. \(f\left( x \right) \le 0\) với mọi \(x\) khi và chỉ khi \(a > 0\) và \(\Delta \le 0\)
Phương pháp giải - Xem chi tiết
Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right),\Delta = {b^2} - 4ac\)
+ Nếu \(\Delta < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\)
+ Nếu \(\Delta = 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)
+ Nếu \(\Delta > 0\) thì \(f\left( x \right)\) có hai nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:
\(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x\) thuộc các khoảng \(\left( { - \infty ;{x_1}} \right) \cup \left( {{x_2}; + \infty } \right)\)
\(f\left( x \right)\) trái dấu với hệ số \(a\) với mọi \(x\) thuộc khoảng \(\left( {x{ & _1};{x_2}} \right)\)
Lời giải chi tiết
Ta có: \(\Delta < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\) nên \(f\left( x \right) < 0\) với mọi \(x\) khi và chỉ khi \(a < 0\) và \(\Delta < 0\)
Và \(f\left( x \right) \le 0\) với mọi \(x\) khi và chỉ khi \(a < 0\) và \(\Delta \le 0\)
Chọn B.
Bài 22 trang 52 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của các phép toán này để giải quyết các bài toán liên quan đến hình học phẳng.
Bài 22 thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 22 trang 52 SBT Toán 10 Cánh Diều, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Cho hai vectơ a = (2; -1) và b = (-3; 4). Tính 2a - b.
Giải:
2a = (4; -2)
2a - b = (4; -2) - (-3; 4) = (4 + 3; -2 - 4) = (7; -6)
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 10 Cánh Diều và các tài liệu tham khảo khác.
Bài 22 trang 52 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng các kiến thức về vectơ trong mặt phẳng. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và các bài tập tương tự khác.