Logo Header
  1. Môn Toán
  2. Giải bài 82 trang 108 SBT toán 10 - Cánh diều

Giải bài 82 trang 108 SBT toán 10 - Cánh diều

Giải bài 82 trang 108 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 82 trang 108 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Cho tam giác ABC và đường thẳng d không có điểm chung với bất kì cạnh nào của tam giác. M là điểm thay đổi trên đường thẳng d. Xác định vị trí của M sao cho biểu thức \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.

Đề bài

Cho tam giác ABC và đường thẳng d không có điểm chung với bất kì cạnh nào của tam giác. M là điểm thay đổi trên đường thẳng d. Xác định vị trí của M sao cho biểu thức \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.

Phương pháp giải - Xem chi tiếtGiải bài 82 trang 108 SBT toán 10 - Cánh diều 1

Bước 1: Tìm điểm P sao cho \(\overrightarrow {PA} + \overrightarrow {PB} + \overrightarrow {PC} = \overrightarrow 0 \)

Bước 2: Tách vectơ sao cho xuất hiện \(\overrightarrow {MP} \)

Bước 3: Tìm giá trị nhỏ nhất của biểu thức rút gọn ở bước 2 và kết luận

Lời giải chi tiết

Lời giải chi tiết

Gọi G là trọng tâm tam giác ABC. Khi đó \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

Ta có: \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {MG} + \overrightarrow {GB} + \overrightarrow {MG} + \overrightarrow {GC} } \right|\)

\( = \left| {3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)} \right| = 3\left| {\overrightarrow {MG} } \right|\)\( \ge 3HG\) (với H là hình chiếu của G trên d)

Vậy với M là hình chiếu của G trên đường thẳng d thì biểu thức \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 82 trang 108 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 82 trang 108 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 82 trang 108 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan. Việc giải bài tập này không chỉ giúp học sinh củng cố kiến thức lý thuyết mà còn rèn luyện kỹ năng giải quyết vấn đề thực tế.

Nội dung bài 82 trang 108 SBT Toán 10 - Cánh Diều

Bài 82 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ trong hình.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ vào giải quyết các bài toán hình học.

Lời giải chi tiết bài 82 trang 108 SBT Toán 10 - Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 82. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để đạt hiệu quả học tập tốt nhất.

Phần a: (Ví dụ minh họa - cần nội dung cụ thể của bài tập)

Giả sử bài tập yêu cầu tìm vectơ tổng của hai vectơ ab. Lời giải sẽ như sau:

Vectơ tổng của ab, ký hiệu là a + b, là một vectơ có:

  • Hướng: Hướng của a + b là hướng của vectơ kết quả khi đặt đỉnh của b vào đỉnh của a.
  • Độ dài: Độ dài của a + b bằng độ dài của cạnh đối diện của hình bình hành tạo bởi ab.

Để tính toán cụ thể, bạn cần sử dụng các tọa độ của vectơ ab. Nếu a = (x1, y1)b = (x2, y2) thì a + b = (x1 + x2, y1 + y2).

Phần b: (Ví dụ minh họa - cần nội dung cụ thể của bài tập)

Giả sử bài tập yêu cầu chứng minh rằng hai vectơ uv cùng phương. Lời giải sẽ như sau:

Để chứng minh hai vectơ uv cùng phương, ta cần chứng minh rằng tồn tại một số thực k sao cho u = k.v. Điều này có nghĩa là vectơ u có thể được tạo thành bằng cách nhân vectơ v với một số thực k.

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:

  • Nắm vững định nghĩa và tính chất của vectơ.
  • Vẽ hình minh họa để hình dung rõ hơn về bài toán.
  • Sử dụng các công thức và quy tắc một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự sau:

  1. Bài 83 trang 108 SBT Toán 10 - Cánh Diều
  2. Bài 84 trang 109 SBT Toán 10 - Cánh Diều
  3. Các bài tập về vectơ trong sách giáo khoa Toán 10

Kết luận

Hy vọng rằng, với lời giải chi tiết và những lời khuyên hữu ích trên đây, bạn đã có thể tự tin giải bài 82 trang 108 SBT Toán 10 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 10