Bài 52 trang 62 SBT Toán 10 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 52 trang 62 SBT Toán 10 Cánh Diều, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\sqrt {8 - x} + x = - 4\)
b) \(\sqrt {3{x^2} - 5x + 2} + 3x = 4\)
Phương pháp giải - Xem chi tiết
Bước 1: Đưa về PT dạng \(\sqrt {f\left( x \right)} = g\left( x \right)\)
Bước 2: \(\sqrt {f\left( x \right)} = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\end{array} \right.\)
Lời giải chi tiết
a) \(\sqrt {8 - x} + x = - 4 \Leftrightarrow \sqrt {8 - x} = - x - 4\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l} - x - 4 \ge 0\\8 - x = {\left( { - x - 4} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le - 4\\8 - x = {x^2} + 8x + 16\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le - 4\\{x^2} + 9x + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le - 4\\\left[ \begin{array}{l}x = - 1\;(L)\\x = - 8\;\end{array} \right.\end{array} \right.\quad \Leftrightarrow x = - 8\end{array}\)
Vậy \(S = \left\{ { - 8} \right\}\)
b) \(\sqrt {3{x^2} - 5x + 2} + 3x = 4 \Leftrightarrow \sqrt {3{x^2} - 5x + 2} = 4 - 3x\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}4 - 3x \ge 0\\3{x^2} - 5x + 2 = {\left( {4 - 3x} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{4}{3}\\3{x^2} - 5x + 2 = 9{x^2} - 24x + 16\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{4}{3}\\6{x^2} - 19x + 14 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{4}{3}\\\left[ \begin{array}{l}x = 2\;(L)\\x = \frac{7}{6}\;\end{array} \right.\end{array} \right.\quad \Leftrightarrow x = \frac{7}{6}\;\end{array}\)
Vậy \(S = \left\{ {\frac{7}{6}} \right\}\)
Bài 52 trang 62 SBT Toán 10 Cánh Diều thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Bài tập 52 thường bao gồm các dạng bài sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng câu hỏi trong bài 52 trang 62 SBT Toán 10 Cánh Diều. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 52, ví dụ:)
(Nội dung câu a của bài 52)
Lời giải:
(Giải thích chi tiết từng bước giải câu a, kèm theo công thức và hình vẽ minh họa nếu cần thiết)
(Nội dung câu b của bài 52)
Lời giải:
(Giải thích chi tiết từng bước giải câu b, kèm theo công thức và hình vẽ minh họa nếu cần thiết)
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:
Bài 52 trang 62 SBT Toán 10 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc học tập môn Toán.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng, xác định bởi điểm gốc và điểm cuối. |
Tích vô hướng | Một phép toán giữa hai vectơ, cho kết quả là một số thực. |