Logo Header
  1. Môn Toán
  2. Giải bài 79 trang 108 SBT toán 10 - Cánh diều

Giải bài 79 trang 108 SBT toán 10 - Cánh diều

Giải bài 79 trang 108 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 79 trang 108 SBT Toán 10 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

a) Chứng minh đẳng thức \({\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \) với \(\overrightarrow a ,\overrightarrow b \) là hai vectơ bất kì

Đề bài

a) Chứng minh đẳng thức \({\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \) với \(\overrightarrow a ,\overrightarrow b \) là hai vectơ bất kì

b) Cho \(\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3,\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 7 \). Tinh \(\overrightarrow a .\overrightarrow b \) và \(\left( {\overrightarrow a ,\overrightarrow b } \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 79 trang 108 SBT toán 10 - Cánh diều 1

Bước 1: Dựng hình bình hành ABCD sao cho \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \)

Bước 2: Sử dụng các quy tắc vectơ và hệ thức lượng trong tam giác để chứng minh đẳng thức

\({\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \)

Bước 3: Áp dụng đẳng thức \({\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \) để tính \(\overrightarrow a .\overrightarrow b \) và \(\left( {\overrightarrow a ,\overrightarrow b } \right)\)

Lời giải chi tiết

Giải bài 79 trang 108 SBT toán 10 - Cánh diều 2

a) Xét hình bình hành ABCD thỏa mãn \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \)

Theo quy tắc hình bình hành ta có:

 \(\overrightarrow a + \overrightarrow b = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \Rightarrow \left| {\overrightarrow a + \overrightarrow b } \right| = AC\)

Mà \(A{C^2} = A{B^2} + B{C^2} - 2AB.AC.\cos B = A{B^2} + A{D^2} - 2AB.AD.\cos B\)

Mặt khác, \(\widehat {BAD} + \widehat B = {180^0} \Rightarrow \cos \widehat B = - \cos \widehat {BAD}\)

\( \Rightarrow A{C^2} = A{B^2} + A{D^2} + 2AB.AD.\cos \widehat {BAD} = {\left| {\overrightarrow {AB} } \right|^2} + {\left| {\overrightarrow {AD} } \right|^2} + 2AB.AD.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = {\left| {\overrightarrow {AB} } \right|^2} + {\left| {\overrightarrow {AD} } \right|^2} + 2\overrightarrow {AB} .\overrightarrow {AD} \)

\( \Rightarrow {\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \) (ĐPCM)

b) Theo a) \({\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \)

\( \Rightarrow \overrightarrow a .\overrightarrow b = \frac{{{{\left| {\overrightarrow a + \overrightarrow b } \right|}^2} - {{\left| {\overrightarrow a } \right|}^2} - {{\left| {\overrightarrow b } \right|}^2}}}{2} = \frac{{{{\sqrt 7 }^2} - {2^2} - {3^2}}}{2} = - 3\)

Ta có: \(\overrightarrow a .\overrightarrow b = - 3 \Leftrightarrow \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = - 3 \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{ - 3}}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = - \frac{1}{2}\) \( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {120^0}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 79 trang 108 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 79 trang 108 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 79 trang 108 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 79 thường bao gồm các dạng bài tập sau:

  • Tìm tọa độ của vectơ: Cho các điểm A, B, C, yêu cầu tìm tọa độ của vectơ AB, AC, BC.
  • Biểu diễn vectơ qua các vectơ khác: Biểu diễn một vectơ nào đó qua hai vectơ khác.
  • Chứng minh ba điểm thẳng hàng: Sử dụng vectơ để chứng minh ba điểm A, B, C thẳng hàng.
  • Tìm điểm D sao cho ABCD là hình bình hành: Sử dụng tính chất của hình bình hành và vectơ để tìm tọa độ điểm D.

Lời giải chi tiết bài 79 trang 108 SBT Toán 10 - Cánh Diều

Để giải bài 79 trang 108 SBT Toán 10 - Cánh Diều, chúng ta cần thực hiện các bước sau:

  1. Xác định các vectơ liên quan: Xác định các vectơ cần tìm hoặc chứng minh.
  2. Sử dụng công thức tọa độ của vectơ: Nếu biết tọa độ của các điểm, sử dụng công thức để tính tọa độ của vectơ.
  3. Vận dụng các tính chất của vectơ: Sử dụng các tính chất của vectơ để chứng minh hoặc tìm kiếm.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả cuối cùng là chính xác và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa:

Cho A(1; 2), B(3; 4), C(5; 6). Tìm tọa độ của vectơ AB và AC.

Giải:

Vectơ AB có tọa độ là (3 - 1; 4 - 2) = (2; 2).

Vectơ AC có tọa độ là (5 - 1; 6 - 2) = (4; 4).

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 79, còn rất nhiều bài tập tương tự trong SBT Toán 10 - Cánh Diều. Để giải quyết các bài tập này, bạn cần:

  • Nắm vững định nghĩa và tính chất của vectơ.
  • Thành thạo các phép toán trên vectơ.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Mẹo giải nhanh

Để giải nhanh các bài tập về vectơ, bạn có thể sử dụng một số mẹo sau:

  • Vẽ hình minh họa: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng các công thức một cách linh hoạt: Nắm vững các công thức và biết cách áp dụng chúng vào từng bài toán cụ thể.
  • Kiểm tra lại kết quả: Luôn kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tốt môn Toán 10, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 - Cánh Diều
  • Sách bài tập Toán 10 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn

Kết luận

Bài 79 trang 108 SBT Toán 10 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 10