Logo Header
  1. Môn Toán
  2. Giải bài 15 trang 79 SBT toán 10 - Cánh diều

Giải bài 15 trang 79 SBT toán 10 - Cánh diều

Giải bài 15 trang 79 SBT Toán 10 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 15 trang 79 trong sách bài tập Toán 10 - Cánh Diều, giúp bạn củng cố kiến thức và tự tin hơn trong học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán.

Cho tam giác ABC có \(\widehat B = {60^0},BC = 8,AB + AC = 12\). Tính độ dài các cạnh AB, AC

Đề bài

Cho tam giác ABC có \(\widehat B = {60^0},BC = 8,AB + AC = 12\). Tính độ dài các cạnh AB, AC

Phương pháp giải - Xem chi tiếtGiải bài 15 trang 79 SBT toán 10 - Cánh diều 1

Bước 1: Biểu diễn AB hoặc AC theo cạnh còn lại

Bước 2: Áp dụng định lí cosin cho ∆ABC, lập PT với ẩn AB hoặc AC

Bước 3: Giải PT ở bước 2 để tìm độ dài cạnh AB, AC rồi kết luận

Lời giải chi tiết

Theo giả thiết,\(AB + AC = 12 \Rightarrow AC = 12 - AB\)

Áp dụng định lí cosin cho ∆ABC ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow {(12 - AB)^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow 144 - 24.AB + A{B^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\end{array}\)

\( \Leftrightarrow B{C^2} - 2.AB.BC.\cos B + 24AB - 144 = 0\)

\( \Leftrightarrow {8^2} - 2.AB.8.\cos {60^0} + 24AB - 144 = 0\)

\( \Leftrightarrow 16AB - 80 = 0 \Leftrightarrow AB = 5\)

\( \Rightarrow \) \(AC = 12 - AB = 7\)

Vậy AB = 5, AC = 7

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 15 trang 79 SBT toán 10 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 15 trang 79 SBT Toán 10 - Cánh Diều: Tổng quan

Bài 15 trang 79 SBT Toán 10 - Cánh Diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.

Nội dung bài tập

Bài 15 trang 79 SBT Toán 10 - Cánh Diều thường bao gồm các dạng bài tập sau:

  • Tìm vectơ: Xác định vectơ biểu diễn một đoạn thẳng, một đường thẳng, hoặc một hình hình học cụ thể.
  • Thực hiện phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực, tính độ dài của vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của vectơ để chứng minh một đẳng thức vectơ cho trước.
  • Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng, sử dụng vectơ để chứng minh tính chất của các hình hình học.

Lời giải chi tiết bài 15 trang 79 SBT Toán 10 - Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi trong bài 15 trang 79 SBT Toán 10 - Cánh Diều. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.

Câu a)

Đề bài: Cho tam giác ABC. Tìm vectơ biểu diễn cạnh BC.

Lời giải: Vectơ biểu diễn cạnh BC là BC.

Câu b)

Đề bài: Cho hai điểm A(1; 2) và B(3; 4). Tìm tọa độ của vectơ AB.

Lời giải: Tọa độ của vectơ AB là (3 - 1; 4 - 2) = (2; 2).

Câu c)

Đề bài: Cho vectơ a = (1; -2) và b = (3; 1). Tính a + b.

Lời giải:a + b = (1 + 3; -2 + 1) = (4; -1).

Mẹo giải bài tập vectơ

Để giải tốt các bài tập về vectơ, bạn nên lưu ý những điều sau:

  • Nắm vững định nghĩa và tính chất của vectơ: Đây là nền tảng cơ bản để giải các bài tập về vectơ.
  • Sử dụng hình vẽ: Vẽ hình minh họa sẽ giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Áp dụng các quy tắc phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực là những phép toán cơ bản cần nắm vững.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn rèn luyện kỹ năng và làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo

Để học tốt môn Toán 10, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 - Cánh Diều
  • Sách bài tập Toán 10 - Cánh Diều
  • Các trang web học Toán online uy tín như giaitoan.edu.vn

Kết luận

Hy vọng rằng, với lời giải chi tiết và những mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài 15 trang 79 SBT Toán 10 - Cánh Diều và các bài tập tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10