Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 1 trang 121 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Cho tứ diện ABCD. Gọi \({G_1}\) và \({G_2}\) lần lượt là trọng tâm của hai tam giác ABD và ACD. Chứng minh \({G_1}{G_2}\) song song với các mặt phẳng (ABC) và (BCD).
Đề bài
Cho tứ diện ABCD. Gọi \({G_1}\) và \({G_2}\) lần lượt là trọng tâm của hai tam giác ABD và ACD. Chứng minh \({G_1}{G_2}\) song song với các mặt phẳng (ABC) và (BCD).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về điều kiện để một đường thẳng song song với một mặt phẳng để chứng minh: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nào đó nằm trong (P) thì a song song với (P).
Lời giải chi tiết
Gọi M, N lần lượt là trung điểm của DB, DC. Do đó, MN là đường trung bình của tam giác DBC. Suy ra MN//BC (1)
Vì \({G_1}\) là trọng tâm của tam giác ADB nên \(\frac{{A{G_1}}}{{AM}} = \frac{2}{3}\).
Vì \({G_2}\) là trọng tâm của tam giác ADC nên \(\frac{{A{G_2}}}{{AN}} = \frac{2}{3}\).
Tam giác AMN có: \(\frac{{A{G_1}}}{{AM}} = \frac{{A{G_2}}}{{AN}}\left( { = \frac{2}{3}} \right)\) nên \({G_1}{G_2}//MN\) (2) (định lí Thalès đảo)
Từ (1) và (2) ta có: \({G_1}{G_2}//MN//BC\).
Vì \({G_1}{G_2}//BC\), \({G_1}{G_2}\) không nằm trong mặt phẳng (ABC), \(BC \subset \left( {ABC} \right)\) nên \({G_1}{G_2}\)//(ABC)
Vì \({G_1}{G_2}//BC\), \({G_1}{G_2}\) không nằm trong mặt phẳng (DBC), \(BC \subset \left( {DBC} \right)\) nên \({G_1}{G_2}\)//(DBC).
Bài 1 trang 121 sách bài tập toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học môn Toán lớp 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về hàm số lượng giác, tính chất của hàm số, và các phương pháp giải phương trình lượng giác cơ bản.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 121 sách bài tập toán 11 - Chân trời sáng tạo tập 1 hiệu quả, bạn có thể áp dụng các phương pháp sau:
Bài toán: Giải phương trình lượng giác: sin(x) = 1/2
Lời giải:
Phương trình sin(x) = 1/2 có nghiệm là:
Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý những điều sau:
Để học tập và ôn luyện môn Toán lớp 11 hiệu quả, bạn có thể tham khảo các tài liệu sau:
Bài 1 trang 121 sách bài tập toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!