Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 23 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 9 trang 23 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 9 trang 23 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 23 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Cho hai số thực a và b thỏa mãn ({125^a}{.25^b} = 3). Tính giá trị của biểu thức (P = 3a + 2b).

Đề bài

Cho hai số thực a và b thỏa mãn \({125^a}{.25^b} = 3\). Tính giá trị của biểu thức \(P = 3a + 2b\).

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 23 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về giải phương trình mũ cơ bản để giải phương trình:

\({a^x} = b\left( {a > 0,a \ne 1} \right)\)

+ Nếu \(b \le 0\) thì phương trình vô nghiệm.

+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\)

Chú ý: Với \(a > 0,a \ne 1\) thì \({a^x} = {a^\alpha } \Leftrightarrow x = \alpha \), tổng quát hơn: \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)

Lời giải chi tiết

\({125^a}{.25^b} = 3 \) \( \Leftrightarrow {5^{3a}}{.5^{2b}} = 3 \) \( \Leftrightarrow {5^{3a + 2b}} = 3 \) \( \Leftrightarrow 3a + 2b = {\log _5}3\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 9 trang 23 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 9 trang 23 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 9 trang 23 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để thành công trong việc giải bài tập này.

Nội dung bài tập

Bài 9 trang 23 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của hàm số lượng giác: Tìm tập xác định, tập giá trị, chu kỳ, biên độ, pha ban đầu của hàm số.
  • Vẽ đồ thị hàm số lượng giác: Sử dụng các kiến thức về đồ thị hàm số cơ bản và các phép biến đổi để vẽ đồ thị của hàm số.
  • Giải phương trình lượng giác: Vận dụng các công thức lượng giác và các phương pháp giải phương trình để tìm nghiệm của phương trình.
  • Ứng dụng hàm số lượng giác vào thực tế: Giải các bài toán liên quan đến các hiện tượng thực tế, ví dụ như bài toán về dao động điều hòa.

Lời giải chi tiết bài 9 trang 23

Để giúp bạn hiểu rõ hơn về cách giải bài 9 trang 23, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi trong bài tập. Lời giải sẽ được trình bày một cách rõ ràng, dễ hiểu, kèm theo các giải thích chi tiết để bạn có thể tự học và nắm vững kiến thức.

Câu a: (Ví dụ minh họa)

Giả sử câu a yêu cầu xác định tập xác định của hàm số y = tan(2x + π/3).

Lời giải:

Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ, với k là số nguyên.

Suy ra 2x ≠ π/6 + kπ, hay x ≠ π/12 + kπ/2, với k là số nguyên.

Vậy tập xác định của hàm số là D = R \ {π/12 + kπ/2, k ∈ Z}.

Câu b: (Ví dụ minh họa)

Giả sử câu b yêu cầu vẽ đồ thị hàm số y = 2sin(x - π/4).

Lời giải:

Hàm số y = 2sin(x - π/4) có biên độ là 2, chu kỳ là 2π, và pha ban đầu là -π/4.

Để vẽ đồ thị, ta thực hiện các bước sau:

  1. Vẽ đồ thị hàm số y = sin(x).
  2. Biến đổi đồ thị hàm số y = sin(x) bằng cách dịch chuyển sang phải π/4 đơn vị.
  3. Biến đổi đồ thị hàm số y = sin(x - π/4) bằng cách nhân với 2 theo phương Oy.

Mẹo giải bài tập hàm số lượng giác

Để giải bài tập hàm số lượng giác một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững các công thức lượng giác cơ bản: Các công thức cộng, trừ, nhân, chia, hạ bậc, nâng bậc lượng giác là công cụ quan trọng để giải quyết các bài toán.
  • Sử dụng các phép biến đổi đồ thị: Các phép tịnh tiến, đối xứng, co giãn đồ thị giúp bạn dễ dàng hình dung và giải quyết các bài toán liên quan đến đồ thị hàm số.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán nhanh chóng và chính xác các giá trị lượng giác.

Kết luận

Bài 9 trang 23 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.

Hãy tiếp tục luyện tập và khám phá thêm nhiều kiến thức thú vị khác về Toán học tại giaitoan.edu.vn!

Tài liệu, đề thi và đáp án Toán 11