Bài 2 trang 61 sách bài tập Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân. Bài tập này thường yêu cầu học sinh vận dụng các công thức và tính chất đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2 trang 61 sách bài tập Toán 11 Chân trời sáng tạo tập 2, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Cho biết \(SA = a\) và \(SA \bot \left( {ABCD} \right)\).
Đề bài
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Cho biết \(SA = a\) và \(SA \bot \left( {ABCD} \right)\). Trên BC lấy điểm I sao cho tam giác SDI vuông tại S. Biết góc giữa hai mặt phẳng (SDI) và (ABCD) là \({60^0}\). Tính độ dài SI.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng.
Lời giải chi tiết
Kẻ \(AK \bot ID\) tại K. Vì \(SA \bot \left( {ABCD} \right),AK \subset \left( {ABCD} \right) \Rightarrow SA \bot ID\), mà \(AK \bot ID\) nên \(ID \bot \left( {SAK} \right) \Rightarrow ID \bot SK\)
Ta có: \(AK \bot ID,ID \bot SK,AK \subset \left( {ABCD} \right),SK \subset \left( {SID} \right)\), ID là giao tuyến của hai mặt phẳng SID và ABCD. Do đó, \(\left( {\left( {SID} \right),\left( {ABCD} \right)} \right) = \left( {SK,AK} \right) = \widehat {SKA} = {60^0}\)
Vì \(SA \bot \left( {ABCD} \right),AD,AK \subset \left( {ABCD} \right) \Rightarrow SA \bot AD,SA \bot AK\)
Áp dụng định lí Pythagore vào tam giác SAD vuông tại A có:
\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \)
Tam giác SAK vuông tại A nên: \(\sin \widehat {SKA} = \frac{{SA}}{{SK}} \Rightarrow SK = \frac{{SA}}{{\sin \widehat {SKA}}} = \frac{{2a\sqrt 3 }}{3}\)
Tam giác SID vuông tại S, đường cao SK có:
\(\frac{1}{{S{I^2}}} + \frac{1}{{S{D^2}}} = \frac{1}{{S{K^2}}} \) \( \Rightarrow \frac{1}{{S{I^2}}} = \frac{1}{{S{K^2}}} - \frac{1}{{S{D^2}}} = \left( {\frac{9}{{12{a^2}}}} \right) - \frac{1}{{{{\left( {a\sqrt 5 } \right)}^2}}} = \frac{{11}}{{20{a^2}}} \) \( \Rightarrow SI = \frac{{2a\sqrt {55} }}{{11}}\)
Bài 2 trong sách bài tập Toán 11 Chân trời sáng tạo tập 2 tập trung vào việc ứng dụng các kiến thức về dãy số, đặc biệt là cấp số cộng và cấp số nhân, vào giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định được loại dãy số, tìm số hạng tổng quát và tính tổng của dãy số đó.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài 2 trang 61, chúng ta sẽ đi qua từng phần của bài tập. (Lưu ý: Nội dung chi tiết lời giải sẽ được trình bày cụ thể cho từng câu hỏi trong bài 2, giả sử bài 2 có nhiều câu hỏi nhỏ. Ví dụ dưới đây chỉ mang tính minh họa)
Đề bài: Cho dãy số (un) với u1 = 2 và un+1 = 2un. Tìm số hạng thứ 5 của dãy số.
Lời giải:
Kết luận: Số hạng thứ 5 của dãy số là 32.
Khi giải các bài tập về dãy số, học sinh cần lưu ý những điều sau:
Để học tốt môn Toán 11, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 2 trang 61 sách bài tập Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về dãy số. Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán 11.