Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 22 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \({3^{2x + 1}} = \frac{1}{{27}}\);
b) \({5^{2x}} = 10\);
c) \({3^x} = 18\);
d) \(0,{2^{x - 1}} = \frac{1}{{\sqrt {125} }}\);
e) \({5^{3x}} = {25^{x - 2}}\);
g) \({\left( {\frac{1}{8}} \right)^{x + 1}} = {\left( {\frac{1}{{32}}} \right)^{x - 1}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giải phương trình mũ cơ bản để giải phương trình:
\({a^x} = b\left( {a > 0,a \ne 1} \right)\)
+ Nếu \(b \le 0\) thì phương trình vô nghiệm.
+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\)
Chú ý: Với \(a > 0,a \ne 1\) thì \({a^x} = {a^\alpha } \Leftrightarrow x = \alpha \), tổng quát hơn: \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
Lời giải chi tiết
a) \({3^{2x + 1}} = \frac{1}{{27}} \) \( \Leftrightarrow {3^{2x + 1}} = {3^{ - 3}} \) \( \Leftrightarrow 2x + 1 = - 3 \) \( \Leftrightarrow 2x = - 4 \) \( \Leftrightarrow x = - 2\)
Vậy phương trình đã cho có tập nghiệm là: \(S = \left\{ { - 2} \right\}\).
b) \({5^{2x}} = 10 \) \( \Leftrightarrow 2x = {\log _5}10 \) \( \Leftrightarrow x = \frac{1}{2}{\log _5}10\)
Vậy phương trình đã cho có tập nghiệm là: \(S = \left\{ {\frac{1}{2}{{\log }_5}10} \right\}\).
c) \({3^x} = 18 \) \( \Leftrightarrow x = {\log _3}18\)
Vậy phương trình đã cho có tập nghiệm là: \(S = \left\{ {{{\log }_3}18} \right\}\).
d) \(0,{2^{x - 1}} = \frac{1}{{\sqrt {125} }} \) \( \Leftrightarrow 0,{2^{x - 1}} = {\left( {\frac{1}{5}} \right)^{\frac{3}{2}}} \) \( \Leftrightarrow 0,{2^{x - 1}} = 0,{2^{\frac{3}{2}}} \) \( \Leftrightarrow x - 1 = \frac{3}{2} \) \( \Leftrightarrow x = \frac{5}{2}\)
Vậy phương trình đã cho có tập nghiệm là: \(S = \left\{ {\frac{5}{2}} \right\}\).
e) \({5^{3x}} = {25^{x - 2}} \) \( \Leftrightarrow {5^{3x}} = {5^{2\left( {x - 2} \right)}} \) \( \Leftrightarrow 3x = 2x - 4 \) \( \Leftrightarrow x = - 4\)
Vậy phương trình đã cho có tập nghiệm là: \(S = \left\{ { - 4} \right\}\).
g) \({\left( {\frac{1}{8}} \right)^{x + 1}} = {\left( {\frac{1}{{32}}} \right)^{x - 1}} \) \( \Leftrightarrow {\left( {\frac{1}{2}} \right)^{3\left( {x + 1} \right)}} = {\left( {\frac{1}{2}} \right)^{5\left( {x - 1} \right)}} \) \( \Leftrightarrow 3x + 3 = 5x - 5 \) \( \Leftrightarrow 2x = 8 \) \( \Leftrightarrow x = 4\)
Vậy phương trình đã cho có tập nghiệm là: \(S = \left\{ 4 \right\}\).
Bài 1 trang 22 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản (sin, cos, tan, cot) để giải quyết các bài toán liên quan đến việc xác định tập xác định, tập giá trị, tính chu kỳ và vẽ đồ thị của hàm số.
Bài 1 bao gồm một số câu hỏi nhỏ, mỗi câu hỏi tập trung vào một khía cạnh khác nhau của hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, học sinh cần:
Câu a: Xác định tập xác định của hàm số y = tan(2x + π/3). Để hàm số có nghĩa, ta cần có cos(2x + π/3) ≠ 0. Điều này tương đương với 2x + π/3 ≠ π/2 + kπ, với k là số nguyên. Giải phương trình này, ta được x ≠ π/12 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là R \ {π/12 + kπ/2, k ∈ Z}.
Câu b: Xác định tập giá trị của hàm số y = 2sin(x) - 1. Vì -1 ≤ sin(x) ≤ 1, ta có -2 ≤ 2sin(x) ≤ 2. Do đó, -3 ≤ 2sin(x) - 1 ≤ 1. Vậy tập giá trị của hàm số là [-3, 1].
Câu c: Tìm chu kỳ của hàm số y = cos(3x). Chu kỳ của hàm số cos(x) là 2π. Do đó, chu kỳ của hàm số y = cos(3x) là 2π/3.
Để hiểu rõ hơn về cách giải bài tập này, chúng ta hãy xem xét một ví dụ cụ thể. Giả sử chúng ta cần giải bài tập sau:
Tìm tập xác định của hàm số y = √(sin(x) + 1).
Để hàm số có nghĩa, ta cần có sin(x) + 1 ≥ 0, tức là sin(x) ≥ -1. Vì sin(x) luôn lớn hơn hoặc bằng -1 với mọi x, nên tập xác định của hàm số là R.
Bài 1 trang 22 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Bằng cách nắm vững các định nghĩa, tính chất và phương pháp giải bài tập, các em có thể tự tin hơn trong quá trình học tập và đạt kết quả tốt trong các kỳ thi.
Hàm số | Tập xác định | Tập giá trị | Chu kỳ |
---|---|---|---|
y = sin(x) | R | [-1, 1] | 2π |
y = cos(x) | R | [-1, 1] | 2π |
y = tan(x) | R \ {π/2 + kπ, k ∈ Z} | R | π |