Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 11 trang 95 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi bài giải dưới đây để nắm vững kiến thức Toán 11 nhé!
Chứng minh rằng phương trình \({x^5} + 3{x^2} - 1 = 0\) trong mỗi khoảng \(\left( { - 2; - 1} \right);\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\) đều có ít nhất một nghiệm.
Đề bài
Chứng minh rằng phương trình \({x^5} + 3{x^2} - 1 = 0\) trong mỗi khoảng \(\left( { - 2; - 1} \right);\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\) đều có ít nhất một nghiệm.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về ứng dụng tính liên tục của hàm số vào xét sự tồn tại nghiệm của phương trình để chứng minh: Nếu hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì luôn tồn tại ít nhất một điểm \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\).
Lời giải chi tiết
Xét hàm số \(f\left( x \right) = {x^5} + 3{x^2} - 1\), hàm số f(x) liên tục trên \(\mathbb{R}\) nên hàm số f(x) liên tục trên \(\left( { - 2; - 1} \right);\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\).
Ta có: \(f\left( { - 2} \right) = - 21,f\left( { - 1} \right) = 1,f\left( 0 \right) = - 1;f\left( 1 \right) = 3\)
Vì \(f\left( { - 2} \right).f\left( { - 1} \right) = - 21 < 0\) nên phương trình \(f\left( x \right) = 0\) có nghiệm thuộc \(\left( { - 2; - 1} \right)\)
Vì \(f\left( { - 1} \right).f\left( 0 \right) = - 1 < 0\) nên phương trình \(f\left( x \right) = 0\) có nghiệm thuộc \(\left( { - 1;0} \right)\)
Vì \(f\left( 0 \right).f\left( 1 \right) = - 3 < 0\) nên phương trình \(f\left( x \right) = 0\) có nghiệm thuộc \(\left( {0;1} \right)\)
Vậy trong mỗi khoảng \(\left( { - 2; - 1} \right);\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\), phương trình \({x^5} + 3{x^2} - 1 = 0\) đều có ít nhất một nghiệm.
Bài 11 trang 95 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.
Bài 11 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh thực hiện các thao tác như:
Để giải bài 11 trang 95 một cách hiệu quả, học sinh cần:
Câu a: Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính a + b.
Giải:a + b = (1 + (-2); 2 + 1; 3 + 0) = (-1; 3; 3).
Khi làm bài tập về vectơ, cần chú ý đến các vấn đề sau:
Vectơ là một công cụ mạnh mẽ trong việc giải quyết các bài toán hình học. Chúng ta có thể sử dụng vectơ để:
Để củng cố kiến thức, các em có thể tự giải thêm các bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Ngoài ra, các em cũng có thể tìm kiếm các tài liệu tham khảo khác trên mạng internet hoặc tại các thư viện.
Bài 11 trang 95 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng, giúp các em học sinh rèn luyện kỹ năng vận dụng kiến thức về vectơ trong không gian. Hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin giải quyết bài tập một cách hiệu quả.
Vectơ | Định nghĩa |
---|---|
a | Một đoạn thẳng có hướng. |
b | Một đoạn thẳng có hướng. |