Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Không sử dụng máy tính cầm tay, tính giá trị của các biểu thức sau: a) \(\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\); b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\).
Đề bài
Không sử dụng máy tính cầm tay, tính giá trị của các biểu thức sau:
a) \(\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\);
b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về công thức góc nhân đôi để tính: \(\sin 2\alpha = 2\sin \alpha \cos \alpha \)
b) Sử dụng kiến thức về công thức cộng để tính: \(\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \)
Lời giải chi tiết
a) Đặt \(A \) \( = \sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\)
\( \Rightarrow A.\cos {6^0} \) \( = \cos {6^0}\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\)
\( = \frac{1}{2}\sin {12^0}\cos {12^0}\cos {24^0}\cos {48^0} \) \( = \frac{1}{4}\sin {24^0}\cos {24^0}\cos {48^0} \) \( = \frac{1}{8}\sin {48^0}\cos {48^0} \) \( = \frac{1}{{16}}\sin {96^0}\)
Do đó, \(A \) \( = \frac{{\sin {{96}^0}}}{{16\cos {6^0}}} \) \( = \frac{{\cos {6^0}}}{{16\cos {6^0}}} \) \( = \frac{1}{{16}}\)
b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\)
\( = \cos \left( {{{90}^0} - {{22}^0}} \right)\cos \left( {{{90}^0} - {{12}^0}} \right) + \cos {22^0}\cos {12^0} + \cos \left( {{{180}^0} + {{10}^0}} \right)\)
\( = \sin {22^0}\sin {12^0} + \cos {22^0}\cos {12^0} - \cos {10^0}\)
\( = \cos \left( {{{22}^0} - {{12}^0}} \right) - \cos {10^0} \) \( = \cos {10^0} - \cos {10^0} \) \( = 0\)
Bài 9 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán liên quan đến ứng dụng của hàm số bậc hai trong thực tế.
Bài 9 bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 9 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi.
Để xác định các yếu tố của parabol (P): y = x2 - 4x + 3, ta thực hiện các bước sau:
Để viết phương trình parabol có đỉnh I(-1; 2) và tiêu điểm F(-1; 5/2), ta thực hiện các bước sau:
Để giải các bài tập về hàm số bậc hai một cách hiệu quả, bạn nên:
Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập trên, các bạn học sinh đã có thể tự tin giải bài 9 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1. Chúc các bạn học tập tốt!