Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải cụ thể để giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Biết rằng, từ vị trí A, một mũi tên bay với tốc độ 10m/s hướng thẳng tới bia mục tiêu đặt ở vị trí B cách vị trí A một khoảng bằng 10m (Hình 2). Một nhà thông thái lập luận như sau: “Để đến được B, trước hết mũi tên phải đến trung điểm \({A_1}\) của AB. Tiếp theo, nó phải đến trung điểm \({A_2}\) của \({A_1}B\). Tiếp nữa, nó phải đi đến trung điểm \({A_3}\) của \({A_2}B\). Cứ tiếp tục như vậy, vì không bao giờ hết các trung điểm nên mũi tên không thể đến được mục tiêu ở B”.

Đề bài

Biết rằng, từ vị trí A, một mũi tên bay với tốc độ 10m/s hướng thẳng tới bia mục tiêu đặt ở vị trí B cách vị trí A một khoảng bằng 10m (Hình 2). Một nhà thông thái lập luận như sau: “Để đến được B, trước hết mũi tên phải đến trung điểm \({A_1}\) của AB. Tiếp theo, nó phải đến trung điểm \({A_2}\) của \({A_1}B\). Tiếp nữa, nó phải đi đến trung điểm \({A_3}\) của \({A_2}B\). Cứ tiếp tục như vậy, vì không bao giờ hết các trung điểm nên mũi tên không thể đến được mục tiêu ở B”.

Giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Lập luận trên có đúng không? Nếu không, hãy chỉ chỗ ra sai lầm.

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

Sử dụng kiến thức về tổng của cấp số nhân lùi vô hạn để tính tổng: Cấp số nhân vô hạn \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Cấp số nhân lùi vô hạn này có tổng là: \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)

Lời giải chi tiết

Thời gian để mũi tên bay từ A đến \({A_1}\) là \(\frac{1}{2}\) giây, từ \({A_1}\) đến \({A_2}\) là \(\frac{1}{4} = \frac{1}{{{2^2}}}\) giây, từ \({A_2}\) đến \({A_3}\) là \(\frac{1}{8} = \frac{1}{{{2^3}}}\) giây\(,...\)

Tổng thời gian bay của mũi tên là: \(\frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^n}}} + ...\left( * \right)\)

Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là \(\frac{1}{2}\) và công bội bằng \(\frac{1}{2}\).

Do đó, tổng này bằng: \(\frac{1}{2}.\frac{1}{{1 - \frac{1}{2}}} = 1\) (giây)

Như vậy, mũi tên đến bia mục tiêu sau 1 giây.

Lập luận của nhà thông thái là không đúng, sai lầm ở chỗ cho rằng tổng ở (*) không phải là một số hữu hạn.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng học toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị hàm số và giải các bài toán liên quan đến ứng dụng của hàm số lượng giác.

Nội dung bài tập

Bài 7 trang 94 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác.
  • Tìm tập giá trị của hàm số lượng giác.
  • Xét tính chẵn, lẻ của hàm số lượng giác.
  • Vẽ đồ thị hàm số lượng giác.
  • Giải các phương trình, bất phương trình lượng giác.
  • Ứng dụng hàm số lượng giác vào giải các bài toán thực tế.

Lời giải chi tiết bài 7 trang 94

Để giúp bạn hiểu rõ hơn về cách giải bài 7 trang 94, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập. Chúng tôi sẽ phân tích đề bài, xác định các kiến thức cần sử dụng và trình bày các bước giải một cách rõ ràng, dễ hiểu.

Ví dụ minh họa (Giả định một phần của bài tập)

Câu a: Tìm tập xác định của hàm số y = tan(2x).

Lời giải:

Hàm số y = tan(2x) xác định khi và chỉ khi 2x ≠ π/2 + kπ, với k là số nguyên. Suy ra x ≠ π/4 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/4 + kπ/2, k ∈ Z}.

Các lưu ý khi giải bài tập

Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý những điều sau:

  • Nắm vững định nghĩa, tính chất của các hàm số lượng giác.
  • Biết cách vẽ đồ thị hàm số lượng giác.
  • Vận dụng các công thức lượng giác để biến đổi và giải phương trình, bất phương trình.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Mở rộng kiến thức

Để hiểu sâu hơn về hàm số lượng giác, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa toán 11.
  • Sách bài tập toán 11.
  • Các trang web học toán online uy tín.
  • Các video bài giảng về hàm số lượng giác.

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về hàm số lượng giác, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 1 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1.
  • Bài 2 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1.
  • Bài 3 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1.

Kết luận

Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn đã có thể giải bài 7 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Hàm sốTập xác địnhTập giá trị
y = sin(x)R[-1, 1]
y = cos(x)R[-1, 1]
y = tan(x)R \ {π/2 + kπ, k ∈ Z}R

Tài liệu, đề thi và đáp án Toán 11