Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 55 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Cho tứ diện ABCD có \(AB \bot CD\) và \(AC \bot BD\). Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD).
Đề bài
Cho tứ diện ABCD có \(AB \bot CD\) và \(AC \bot BD\). Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD). Chứng minh rằng H là trực tâm của \(\Delta \)BCD. Và \(AD \bot BC\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định lí đường thẳng vuông góc với mặt phẳng để chứng minh: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
Lời giải chi tiết
Vì H là hình chiếu vuông góc của A xuống mặt phẳng (BCD) nên \(AH \bot \left( {BCD} \right)\)
Mà \(CD,BD,BC \subset \left( {BCD} \right) \Rightarrow AH \bot CD,AH \bot BD,AH \bot BC\)
Vì \(AH \bot CD\), \(AB \bot CD\) nên \(CD \bot \left( {ABH} \right) \Rightarrow CD \bot BH\)
Vì \(AH \bot BD\), \(AC \bot BD\) nên \(BD \bot \left( {AHC} \right) \Rightarrow BD \bot HC\)
\(\Delta \)BCD có hai đường cao BH và CH cắt nhau tại H nên H là trực tâm của \(\Delta \)BCD.
Do đó, \(BC \bot DH\)
Lại có: \(AH \bot BC\) nên \(BC \bot \left( {ADH} \right)\). Mà \(AD \subset \left( {ADH} \right)\) nên \(BC \bot AD\)
Bài 2 trang 55 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và quy tắc này là vô cùng quan trọng để thành công trong môn Toán 11.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 55 sách bài tập Toán 11 - Chân trời sáng tạo tập 2, chúng ta cần thực hiện các bước sau:
Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x2 + 3x - 2. Ta thực hiện như sau:
f'(x) = d/dx (x2) + d/dx (3x) - d/dx (2)
f'(x) = 2x + 3 - 0
f'(x) = 2x + 3
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Bài 2 trang 55 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!