Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 55 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 55 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Cho tứ diện ABCD có \(AB \bot CD\) và \(AC \bot BD\). Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD).

Đề bài

Cho tứ diện ABCD có \(AB \bot CD\) và \(AC \bot BD\). Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD). Chứng minh rằng H là trực tâm của \(\Delta \)BCD. Và \(AD \bot BC\)

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về định lí đường thẳng vuông góc với mặt phẳng để chứng minh: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\). 

Lời giải chi tiết

Giải bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

Vì H là hình chiếu vuông góc của A xuống mặt phẳng (BCD) nên \(AH \bot \left( {BCD} \right)\)

Mà \(CD,BD,BC \subset \left( {BCD} \right) \Rightarrow AH \bot CD,AH \bot BD,AH \bot BC\)

Vì \(AH \bot CD\), \(AB \bot CD\) nên \(CD \bot \left( {ABH} \right) \Rightarrow CD \bot BH\)

Vì \(AH \bot BD\), \(AC \bot BD\) nên \(BD \bot \left( {AHC} \right) \Rightarrow BD \bot HC\)

\(\Delta \)BCD có hai đường cao BH và CH cắt nhau tại H nên H là trực tâm của \(\Delta \)BCD.

Do đó, \(BC \bot DH\)

Lại có: \(AH \bot BC\) nên \(BC \bot \left( {ADH} \right)\). Mà \(AD \subset \left( {ADH} \right)\) nên \(BC \bot AD\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2 trang 55 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 2 trang 55 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và quy tắc này là vô cùng quan trọng để thành công trong môn Toán 11.

Nội dung bài tập

Bài 2 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.
  • Khảo sát hàm số bằng đạo hàm.

Lời giải chi tiết bài 2 trang 55

Để giải bài 2 trang 55 sách bài tập Toán 11 - Chân trời sáng tạo tập 2, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số cần tính đạo hàm.
  2. Áp dụng các quy tắc tính đạo hàm phù hợp (quy tắc tổng, hiệu, tích, thương, hàm hợp).
  3. Thực hiện các phép tính toán một cách cẩn thận.
  4. Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x2 + 3x - 2. Ta thực hiện như sau:

f'(x) = d/dx (x2) + d/dx (3x) - d/dx (2)

f'(x) = 2x + 3 - 0

f'(x) = 2x + 3

Các lưu ý khi giải bài tập

  • Nắm vững định nghĩa đạo hàm và các quy tắc tính đạo hàm.
  • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài tập và rèn luyện kỹ năng.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách giáo khoa, sách bài tập để hiểu rõ hơn về kiến thức.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính vận tốc và gia tốc trong vật lý.
  • Tìm cực trị của hàm số trong kinh tế.
  • Khảo sát sự biến thiên của hàm số trong các lĩnh vực khác.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo.
  • Sách bài tập Toán 11 - Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài 2 trang 55 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 11