Bài 1 trang 158 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân. Bài tập này thường yêu cầu học sinh vận dụng các công thức và tính chất của dãy số để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Một trang báo điện tử thống kê thời gian người sử dụng đọc thông tin trên trang trong mỗi lần truy cập ở bảng sau: Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.
Đề bài
Một trang báo điện tử thống kê thời gian người sử dụng đọc thông tin trên trang trong mỗi lần truy cập ở bảng sau:
Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:
Gọi n là cỡ mẫu.
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,
\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).
+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.
Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)
Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)
Lời giải chi tiết
Cỡ mẫu \(n = 125\)
Gọi \({x_1},{x_2},...,{x_{125}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},...,{x_{45}} \in \left[ {0;2} \right),{x_{46}},...,{x_{79}} \in \left[ {2;4} \right),{x_{80}},...,{x_{102}} \in \left[ {4,6} \right),{x_{103}},...,{x_{120}} \in \left[ {6;8} \right),\)
\({x_{121}},...,{x_{125}} \in \left[ {8;10} \right)\)
Do cỡ mẫu \(n = 125\) nên tứ phân vị thứ hai của mẫu số liệu là \({x_{63}}\). Do đó tứ phân vị thứ hai của mẫu số liệu thuộc nhóm \(\left[ {2;4} \right)\).
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là: \({Q_2} = 2 + \frac{{\frac{{125}}{2} - 45}}{{34}}.\left( {4 - 2} \right) = \frac{{103}}{{34}}\)
Do cỡ mẫu \(n = 125\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{31}} + {x_{32}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {0;2} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 0 + \frac{{\frac{{125}}{4} - \left( {0 + 0} \right)}}{{45}}.\left( {2 - 0} \right) = \frac{{25}}{{18}}\)
Do cỡ mẫu \(n = 125\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{94}} + {x_{95}}} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {4;6} \right)\).
Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 4 + \frac{{\frac{{3.125}}{4} - \left( {34 + 45} \right)}}{{23}}.\left( {6 - 4} \right) = \frac{{243}}{{46}}\)
Bài 1 trang 158 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về dãy số, cấp số cộng và cấp số nhân. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Nội dung bài tập:
Bài 1 thường yêu cầu học sinh xác định xem một dãy số đã cho có phải là cấp số cộng hay cấp số nhân hay không, hoặc tính các số hạng của dãy số, tính tổng của dãy số. Đôi khi, bài tập còn yêu cầu học sinh tìm số hạng tổng quát của dãy số.
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi xin trình bày lời giải chi tiết như sau:
(Ở đây sẽ là lời giải chi tiết cho bài 1 trang 158, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng. Lời giải sẽ được trình bày chi tiết, dễ hiểu, phù hợp với trình độ của học sinh lớp 11.)
Để minh họa cho cách giải bài tập này, chúng ta hãy xem xét một ví dụ cụ thể:
Ví dụ: Cho dãy số (un) được xác định bởi u1 = 2 và un+1 = 2un + 1. Chứng minh rằng dãy số (un) là một cấp số nhân và tìm số hạng tổng quát của dãy số.
Lời giải:
Để rèn luyện thêm kỹ năng giải bài tập về dãy số, các em học sinh có thể tham khảo các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin hơn khi giải bài tập về dãy số, cấp số cộng và cấp số nhân. Chúc các em học tập tốt!